Internal
problem
ID
[7223]
Book
:
A
treatise
on
ordinary
and
partial
differential
equations
by
William
Woolsey
Johnson.
1913
Section
:
Chapter
IX,
Special
forms
of
differential
equations.
Examples
XVII.
page
247
Problem
number
:
18
Date
solved
:
Tuesday, September 30, 2025 at 04:25:43 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+exp(2*x)*y(x) = n^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+Exp[2*x]*y[x]==n^2*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(-n**2*y(x) + y(x)*exp(2*x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False