4.4.1 Problems 1 to 100

Table 4.545: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

147

\[ {} x y^{\prime \prime } = y^{\prime } \]

148

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

149

\[ {} y^{\prime \prime }+4 y = 0 \]

151

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

153

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

154

\[ {} y^{\prime \prime } = \left (x +y^{\prime }\right )^{2} \]

155

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

157

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

158

\[ {} y y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

170

\[ {} r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

215

\[ {} y^{\prime \prime }-y = 0 \]

216

\[ {} y^{\prime \prime }-9 y = 0 \]

217

\[ {} y^{\prime \prime }+4 y = 0 \]

218

\[ {} y^{\prime \prime }+25 y = 0 \]

219

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

220

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

221

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

222

\[ {} y^{\prime \prime }-3 y^{\prime } = 0 \]

223

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

224

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

225

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

226

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

227

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

228

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

229

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

230

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

233

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

234

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

235

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

236

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

237

\[ {} 2 y^{\prime \prime }+3 y^{\prime } = 0 \]

238

\[ {} 2 y^{\prime \prime }-y^{\prime }-y = 0 \]

239

\[ {} 4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

240

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

241

\[ {} 9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

242

\[ {} 6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

243

\[ {} 35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

244

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

245

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

246

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

247

\[ {} x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

248

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

262

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

263

\[ {} y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

264

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

265

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

266

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

267

\[ {} \left (1+x \right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

268

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

269

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

270

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

271

\[ {} y^{\prime \prime }-4 y = 0 \]

272

\[ {} 2 y^{\prime \prime }-3 y^{\prime } = 0 \]

273

\[ {} y^{\prime \prime }+y^{\prime }-10 y = 0 \]

274

\[ {} 2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

275

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

276

\[ {} y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

277

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

278

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

279

\[ {} y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

291

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

292

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]

293

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

309

\[ {} y^{\prime \prime }+2 i y^{\prime }+3 y = 0 \]

310

\[ {} y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

311

\[ {} y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

315

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

316

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

514

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

515

\[ {} x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

516

\[ {} x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

517

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (x +8\right ) y = 0 \]

518

\[ {} 36 x^{2} y^{\prime \prime }+60 x y^{\prime }+\left (9 x^{3}-5\right ) y = 0 \]

519

\[ {} 16 x^{2} y^{\prime \prime }+24 x y^{\prime }+\left (144 x^{3}+1\right ) y = 0 \]

520

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

521

\[ {} 4 x^{2} y^{\prime \prime }-12 x y^{\prime }+\left (15+16 x \right ) y = 0 \]

522

\[ {} 16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

523

\[ {} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }-2 \left (-x^{5}+14\right ) y = 0 \]

524

\[ {} y^{\prime \prime }+x^{4} y = 0 \]

525

\[ {} x y^{\prime \prime }+4 x^{3} y = 0 \]

526

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

530

\[ {} x^{\prime \prime }+4 x = 0 \]

531

\[ {} x^{\prime \prime }+9 x = 0 \]

532

\[ {} x^{\prime \prime }-x^{\prime }-2 x = 0 \]

533

\[ {} x^{\prime \prime }+8 x^{\prime }+15 x = 0 \]

541

\[ {} x^{\prime \prime }+6 x^{\prime }+25 x = 0 \]

555

\[ {} t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x = 0 \]

556

\[ {} t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x = 0 \]

557

\[ {} t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x = 0 \]

558

\[ {} t x^{\prime \prime }+2 \left (t -1\right ) x^{\prime }-2 x = 0 \]

559

\[ {} t x^{\prime \prime }-2 x^{\prime }+t x = 0 \]

560

\[ {} t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x = 0 \]

807

\[ {} y^{\prime \prime }-y = 0 \]

808

\[ {} y^{\prime \prime }-9 y = 0 \]

809

\[ {} y^{\prime \prime }+4 y = 0 \]

810

\[ {} y^{\prime \prime }+25 y = 0 \]

811

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

812

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

813

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

814

\[ {} y^{\prime \prime }-3 y^{\prime } = 0 \]