1.5.43 problem 43

Internal problem ID [147]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 43
Date solved : Tuesday, September 30, 2025 at 03:47:14 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x y^{\prime \prime }&=y^{\prime } \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=x*diff(diff(y(x),x),x) = diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,x^{2}+c_1 \]
Mathematica. Time used: 0.006 (sec). Leaf size: 17
ode=x*D[y[x],{x,2}]==D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1 x^2}{2}+c_2 \end{align*}
Sympy. Time used: 0.068 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{2} \]