1.8.6 problem 6

Internal problem ID [220]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.1 (Introduction. Second order linear equations). Problems at page 111
Problem number : 6
Date solved : Tuesday, September 30, 2025 at 03:53:49 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=7 \\ y^{\prime }\left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.047 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-6*y(x) = 0; 
ic:=[y(0) = 7, D(y)(0) = -1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 3 \,{\mathrm e}^{-3 x}+4 \,{\mathrm e}^{2 x} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+D[y[x],x]-6*y[x] == 0; 
ic={y[0]==7,Derivative[1][y][0] ==-1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-3 x} \left (4 e^{5 x}+3\right ) \end{align*}
Sympy. Time used: 0.086 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 7, Subs(Derivative(y(x), x), x, 0): -1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 4 e^{2 x} + 3 e^{- 3 x} \]