Internal
problem
ID
[20939]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
1,
First
order
ODEs.
Problems
section
1.5
Problem
number
:
2.c
Date
solved
:
Thursday, October 02, 2025 at 06:49:41 PM
CAS
classification
:
[[_homogeneous, `class G`], _exact]
ode:=sin(x*y(x))+x*y(x)*cos(x*y(x))+x^2*cos(x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(Sin[x*y[x]]+x*y[x]*Cos[x*y[x]])+(x^2*Cos[x*y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*cos(x*y(x))*Derivative(y(x), x) + x*y(x)*cos(x*y(x)) + sin(x*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)