78.1.14 problem 2.d

Internal problem ID [20940]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 1, First order ODEs. Problems section 1.5
Problem number : 2.d
Date solved : Thursday, October 02, 2025 at 06:49:46 PM
CAS classification : [_linear]

\begin{align*} x^{2}+y-x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 9
ode:=x^2+y(x)-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x +c_1 \right ) x \]
Mathematica. Time used: 0.018 (sec). Leaf size: 11
ode=(x^2+y[x])-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x (x+c_1) \end{align*}
Sympy. Time used: 0.130 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + x\right ) \]