Internal
problem
ID
[20938]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
1,
First
order
ODEs.
Problems
section
1.5
Problem
number
:
2.b
Date
solved
:
Thursday, October 02, 2025 at 06:49:39 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=x+y(x)^2-2*x*y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+y[x]^2)+2*x*y[x]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)*Derivative(y(x), x) + x + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)