5.1.10 Problems 901 to 1000

Table 5.19: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

Sympy

15929

\[ {} y^{\prime } = 3 y \left (1-y\right ) \]

15933

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15934

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15936

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15937

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15956

\[ {} w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]

15957

\[ {} w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]

15958

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

15959

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

15960

\[ {} y^{\prime } = y^{2}-y^{3} \]

15961

\[ {} y^{\prime } = 2 y^{3}+t^{2} \]

15964

\[ {} \theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

15965

\[ {} y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]

15967

\[ {} y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]

15968

\[ {} y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]

15974

\[ {} y^{\prime } = 3 y \left (-2+y\right ) \]

15975

\[ {} y^{\prime } = 3 y \left (-2+y\right ) \]

15976

\[ {} y^{\prime } = 3 y \left (-2+y\right ) \]

15978

\[ {} y^{\prime } = y^{2}-4 y-12 \]

15979

\[ {} y^{\prime } = y^{2}-4 y-12 \]

15981

\[ {} y^{\prime } = y^{2}-4 y-12 \]

15985

\[ {} y^{\prime } = \cos \left (y\right ) \]

15988

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15989

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15990

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15999

\[ {} y^{\prime } = y^{2}-4 y+2 \]

16000

\[ {} y^{\prime } = y^{2}-4 y+2 \]

16001

\[ {} y^{\prime } = y^{2}-4 y+2 \]

16002

\[ {} y^{\prime } = y^{2}-4 y+2 \]

16003

\[ {} y^{\prime } = y^{2}-4 y+2 \]

16004

\[ {} y^{\prime } = y^{2}-4 y+2 \]

16057

\[ {} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]

16080

\[ {} y^{\prime } = \left (-1+y\right ) \left (-2+y\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \]

16083

\[ {} y^{\prime } = 3-y^{2} \]

16273

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

16312

\[ {} \sin \left (x +y\right )-y y^{\prime } = 0 \]

16367

\[ {} x y^{\prime } = y^{2}-y \]

16371

\[ {} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

16545

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16546

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16547

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16548

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16552

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

16558

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

16582

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

17066

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

17069

\[ {} y y^{\prime }+y^{4} = \sin \left (x \right ) \]

17073

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

17074

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

17124

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

17149

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

17223

\[ {} 1 = \cos \left (y\right ) y^{\prime } \]

17232

\[ {} y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]

17334

\[ {} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

17344

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

17348

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

17349

\[ {} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

17405

\[ {} y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0 \]

17460

\[ {} y^{\prime } = \sqrt {x -y} \]

17491

\[ {} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

17535

\[ {} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

17536

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

17647

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

17812

\[ {} y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]

17813

\[ {} y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]

17909

\[ {} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

17958

\[ {} y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

17997

\[ {} y \ln \left (y\right )+x y^{\prime } = 1 \]

18007

\[ {} a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]

18016

\[ {} x^{2} \cos \left (y\right ) y^{\prime }+1 = 0 \]

18017

\[ {} x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]

18018

\[ {} x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]

18019

\[ {} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]

18023

\[ {} x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]

18063

\[ {} x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]

18083

\[ {} \frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

18084

\[ {} 3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

18090

\[ {} \frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

18112

\[ {} {y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0 \]

18141

\[ {} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0 \]

18146

\[ {} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

18221

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

18227

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

18228

\[ {} 3 y^{\prime } y^{\prime \prime } = 2 y \]

18238

\[ {} y^{\prime \prime \prime } = 3 y y^{\prime } \]

18399

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

18401

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

18402

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

18403

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

18450

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {x +6}{x^{2}} \]

18451

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]

18452

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (x -1\right )^{2} {\mathrm e}^{x} \]

18453

\[ {} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

18454

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

18455

\[ {} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]

18456

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = -2+2 x \]

18461

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

18463

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

18466

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

18470

\[ {} y^{\prime \prime }+y = 0 \]