| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = 3 y \left (1-y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} w^{\prime } = \left (3-w\right ) \left (w+1\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} w^{\prime } = \left (3-w\right ) \left (w+1\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y^{3}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y^{3}+t^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 3 y \left (-2+y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y \left (-2+y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y \left (-2+y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y-12
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4 y-12
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4 y-12
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (y\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \left (-1+y\right ) \left (-2+y\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 3-y^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime } = 8 x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x +y\right )-y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+y^{4} = \sin \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x {y^{\prime \prime }}^{2}+2 y = 2 x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+t^{2} = \frac {1}{y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 1 = \cos \left (y\right ) y^{\prime }
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {x -y}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sin \left (y\right )-\cos \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y \ln \left (y\right )+x y^{\prime } = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} \cos \left (y\right ) y^{\prime }+1 = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+\cos \left (2 y\right ) = 1
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime }-\sin \left (y\right ) = 1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+\sin \left (2 y\right ) = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} \frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime } y^{\prime \prime } = 2 y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = 3 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} 6 y-5 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {x +6}{x^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (x -1\right )^{2} {\mathrm e}^{x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = -2+2 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|