Internal
problem
ID
[18451]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
669
Date
solved
:
Thursday, October 02, 2025 at 03:12:10 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=(x^2+1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x) = 1/(x^2+1); ic:=[y(infinity) = 1/8*Pi^2, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(1+x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]==1/(1+x^2); ic={y[Infinity]==Pi^2/8,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - 1/(x**2 + 1),0) ics = {y(oo): pi**2/8, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)