66.4.4 problem 8

Internal problem ID [15968]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number : 8
Date solved : Thursday, October 02, 2025 at 10:35:45 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y \left (-1+y\right ) \left (y-3\right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.556 (sec). Leaf size: 131
ode:=diff(y(t),t) = y(t)*(y(t)-1)*(y(t)-3); 
ic:=[y(0) = -1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {\left (2 \,{\mathrm e}^{6 t}-4\right ) \left (1-{\mathrm e}^{6 t}+\sqrt {{\mathrm e}^{6 t} \left ({\mathrm e}^{6 t}-2\right )}\right )^{{2}/{3}}+\left (\left (i \sqrt {3}-1\right ) \left (1-{\mathrm e}^{6 t}+\sqrt {{\mathrm e}^{6 t} \left ({\mathrm e}^{6 t}-2\right )}\right )^{{1}/{3}}-i \sqrt {3}-1\right ) \left ({\mathrm e}^{6 t}-\sqrt {{\mathrm e}^{6 t} \left ({\mathrm e}^{6 t}-2\right )}-2\right )}{\left (1-{\mathrm e}^{6 t}+\sqrt {{\mathrm e}^{6 t} \left ({\mathrm e}^{6 t}-2\right )}\right )^{{2}/{3}} \left (2 \,{\mathrm e}^{6 t}-4\right )} \]
Mathematica
ode=D[y[t],t]==y[t]*(y[t]-1)*(y[t]-3); 
ic={y[0]==-1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 

{}

Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((3 - y(t))*(y(t) - 1)*y(t) + Derivative(y(t), t),0) 
ics = {y(0): -1} 
dsolve(ode,func=y(t),ics=ics)
 
IndexError : list index out of range