3.133 \(\int \frac {x^4}{\sqrt {\text {csch}(2 \log (c x))}} \, dx\)

Optimal. Leaf size=30 \[ \frac {x^5 \left (c^4-\frac {1}{x^4}\right )}{6 c^4 \sqrt {\text {csch}(2 \log (c x))}} \]

[Out]

1/6*(c^4-1/x^4)*x^5/c^4/csch(2*ln(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {5552, 5550, 264} \[ \frac {x^5 \left (c^4-\frac {1}{x^4}\right )}{6 c^4 \sqrt {\text {csch}(2 \log (c x))}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/Sqrt[Csch[2*Log[c*x]]],x]

[Out]

((c^4 - x^(-4))*x^5)/(6*c^4*Sqrt[Csch[2*Log[c*x]]])

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 5550

Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(Csch[d*(a + b*Log[x])]^p*
(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)/x^(-(b*d*p)), Int[(e*x)^m/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p), x], x]
 /; FreeQ[{a, b, d, e, m, p}, x] &&  !IntegerQ[p]

Rule 5552

Int[Csch[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)), Subst[Int[x^((m + 1)/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[
{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])

Rubi steps

\begin {align*} \int \frac {x^4}{\sqrt {\text {csch}(2 \log (c x))}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^4}{\sqrt {\text {csch}(2 \log (x))}} \, dx,x,c x\right )}{c^5}\\ &=\frac {\operatorname {Subst}\left (\int \sqrt {1-\frac {1}{x^4}} x^5 \, dx,x,c x\right )}{c^6 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}}\\ &=\frac {\left (c^4-\frac {1}{x^4}\right ) x^5}{6 c^4 \sqrt {\text {csch}(2 \log (c x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 44, normalized size = 1.47 \[ \frac {\left (c^4 x^4-1\right )^2 \sqrt {\frac {c^2 x^2}{2 c^4 x^4-2}}}{6 c^6 x} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/Sqrt[Csch[2*Log[c*x]]],x]

[Out]

((-1 + c^4*x^4)^2*Sqrt[(c^2*x^2)/(-2 + 2*c^4*x^4)])/(6*c^6*x)

________________________________________________________________________________________

fricas [A]  time = 1.21, size = 48, normalized size = 1.60 \[ \frac {\sqrt {2} {\left (c^{8} x^{8} - 2 \, c^{4} x^{4} + 1\right )} \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4} - 1}}}{12 \, c^{6} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/csch(2*log(c*x))^(1/2),x, algorithm="fricas")

[Out]

1/12*sqrt(2)*(c^8*x^8 - 2*c^4*x^4 + 1)*sqrt(c^2*x^2/(c^4*x^4 - 1))/(c^6*x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{4}}{\sqrt {\operatorname {csch}\left (2 \, \log \left (c x\right )\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/csch(2*log(c*x))^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/sqrt(csch(2*log(c*x))), x)

________________________________________________________________________________________

maple [A]  time = 0.14, size = 39, normalized size = 1.30 \[ \frac {\sqrt {2}\, x \left (c^{4} x^{4}-1\right )}{12 \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4}-1}}\, c^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/csch(2*ln(c*x))^(1/2),x)

[Out]

1/12*2^(1/2)*x/(c^2*x^2/(c^4*x^4-1))^(1/2)*(c^4*x^4-1)/c^4

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 46, normalized size = 1.53 \[ \frac {{\left (\sqrt {2} c^{4} x^{4} - \sqrt {2}\right )} \sqrt {c^{2} x^{2} + 1} \sqrt {c x + 1} \sqrt {c x - 1}}{12 \, c^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/csch(2*log(c*x))^(1/2),x, algorithm="maxima")

[Out]

1/12*(sqrt(2)*c^4*x^4 - sqrt(2))*sqrt(c^2*x^2 + 1)*sqrt(c*x + 1)*sqrt(c*x - 1)/c^5

________________________________________________________________________________________

mupad [B]  time = 2.15, size = 42, normalized size = 1.40 \[ \frac {{\left (c^4\,x^4-1\right )}^2\,\sqrt {\frac {2\,c^2\,x^2}{c^4\,x^4-1}}}{12\,c^6\,x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(1/sinh(2*log(c*x)))^(1/2),x)

[Out]

((c^4*x^4 - 1)^2*((2*c^2*x^2)/(c^4*x^4 - 1))^(1/2))/(12*c^6*x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{4}}{\sqrt {\operatorname {csch}{\left (2 \log {\left (c x \right )} \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/csch(2*ln(c*x))**(1/2),x)

[Out]

Integral(x**4/sqrt(csch(2*log(c*x))), x)

________________________________________________________________________________________