3.132 \(\int \frac {x^5}{\sqrt {\text {csch}(2 \log (c x))}} \, dx\)

Optimal. Leaf size=81 \[ -\frac {2 x^2}{21 c^4 \sqrt {\text {csch}(2 \log (c x))}}+\frac {2 F\left (\left .\csc ^{-1}(c x)\right |-1\right )}{21 c^7 x \sqrt {1-\frac {1}{c^4 x^4}} \sqrt {\text {csch}(2 \log (c x))}}+\frac {x^6}{7 \sqrt {\text {csch}(2 \log (c x))}} \]

[Out]

-2/21*x^2/c^4/csch(2*ln(c*x))^(1/2)+1/7*x^6/csch(2*ln(c*x))^(1/2)+2/21*EllipticF(1/c/x,I)/c^7/x/(1-1/c^4/x^4)^
(1/2)/csch(2*ln(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {5552, 5550, 335, 277, 325, 221} \[ -\frac {2 x^2}{21 c^4 \sqrt {\text {csch}(2 \log (c x))}}+\frac {2 F\left (\left .\csc ^{-1}(c x)\right |-1\right )}{21 c^7 x \sqrt {1-\frac {1}{c^4 x^4}} \sqrt {\text {csch}(2 \log (c x))}}+\frac {x^6}{7 \sqrt {\text {csch}(2 \log (c x))}} \]

Antiderivative was successfully verified.

[In]

Int[x^5/Sqrt[Csch[2*Log[c*x]]],x]

[Out]

(-2*x^2)/(21*c^4*Sqrt[Csch[2*Log[c*x]]]) + x^6/(7*Sqrt[Csch[2*Log[c*x]]]) + (2*EllipticF[ArcCsc[c*x], -1])/(21
*c^7*Sqrt[1 - 1/(c^4*x^4)]*x*Sqrt[Csch[2*Log[c*x]]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 5550

Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(Csch[d*(a + b*Log[x])]^p*
(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)/x^(-(b*d*p)), Int[(e*x)^m/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p), x], x]
 /; FreeQ[{a, b, d, e, m, p}, x] &&  !IntegerQ[p]

Rule 5552

Int[Csch[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)), Subst[Int[x^((m + 1)/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[
{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])

Rubi steps

\begin {align*} \int \frac {x^5}{\sqrt {\text {csch}(2 \log (c x))}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^5}{\sqrt {\text {csch}(2 \log (x))}} \, dx,x,c x\right )}{c^6}\\ &=\frac {\operatorname {Subst}\left (\int \sqrt {1-\frac {1}{x^4}} x^6 \, dx,x,c x\right )}{c^7 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {\sqrt {1-x^4}}{x^8} \, dx,x,\frac {1}{c x}\right )}{c^7 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}}\\ &=\frac {x^6}{7 \sqrt {\text {csch}(2 \log (c x))}}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{x^4 \sqrt {1-x^4}} \, dx,x,\frac {1}{c x}\right )}{7 c^7 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}}\\ &=-\frac {2 x^2}{21 c^4 \sqrt {\text {csch}(2 \log (c x))}}+\frac {x^6}{7 \sqrt {\text {csch}(2 \log (c x))}}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^4}} \, dx,x,\frac {1}{c x}\right )}{21 c^7 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}}\\ &=-\frac {2 x^2}{21 c^4 \sqrt {\text {csch}(2 \log (c x))}}+\frac {x^6}{7 \sqrt {\text {csch}(2 \log (c x))}}+\frac {2 F\left (\left .\csc ^{-1}(c x)\right |-1\right )}{21 c^7 \sqrt {1-\frac {1}{c^4 x^4}} x \sqrt {\text {csch}(2 \log (c x))}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.18, size = 80, normalized size = 0.99 \[ \frac {x^2 \left (\, _2F_1\left (-\frac {1}{2},\frac {1}{4};\frac {5}{4};c^4 x^4\right )-\left (1-c^4 x^4\right )^{3/2}\right )}{7 c^4 \sqrt {2-2 c^4 x^4} \sqrt {\frac {c^2 x^2}{c^4 x^4-1}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/Sqrt[Csch[2*Log[c*x]]],x]

[Out]

(x^2*(-(1 - c^4*x^4)^(3/2) + Hypergeometric2F1[-1/2, 1/4, 5/4, c^4*x^4]))/(7*c^4*Sqrt[2 - 2*c^4*x^4]*Sqrt[(c^2
*x^2)/(-1 + c^4*x^4)])

________________________________________________________________________________________

fricas [F]  time = 2.02, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {x^{5}}{\sqrt {\operatorname {csch}\left (2 \, \log \left (c x\right )\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/csch(2*log(c*x))^(1/2),x, algorithm="fricas")

[Out]

integral(x^5/sqrt(csch(2*log(c*x))), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{5}}{\sqrt {\operatorname {csch}\left (2 \, \log \left (c x\right )\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/csch(2*log(c*x))^(1/2),x, algorithm="giac")

[Out]

integrate(x^5/sqrt(csch(2*log(c*x))), x)

________________________________________________________________________________________

maple [A]  time = 0.21, size = 125, normalized size = 1.54 \[ \frac {x^{2} \left (3 c^{4} x^{4}-2\right ) \sqrt {2}}{42 c^{4} \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4}-1}}}-\frac {\sqrt {c^{2} x^{2}+1}\, \sqrt {-c^{2} x^{2}+1}\, \EllipticF \left (x \sqrt {-c^{2}}, i\right ) \sqrt {2}\, x}{21 c^{4} \sqrt {-c^{2}}\, \left (c^{4} x^{4}-1\right ) \sqrt {\frac {c^{2} x^{2}}{c^{4} x^{4}-1}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/csch(2*ln(c*x))^(1/2),x)

[Out]

1/42*x^2*(3*c^4*x^4-2)/c^4*2^(1/2)/(c^2*x^2/(c^4*x^4-1))^(1/2)-1/21/c^4/(-c^2)^(1/2)*(c^2*x^2+1)^(1/2)*(-c^2*x
^2+1)^(1/2)/(c^4*x^4-1)*EllipticF(x*(-c^2)^(1/2),I)*2^(1/2)*x/(c^2*x^2/(c^4*x^4-1))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{5}}{\sqrt {\operatorname {csch}\left (2 \, \log \left (c x\right )\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/csch(2*log(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^5/sqrt(csch(2*log(c*x))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^5}{\sqrt {\frac {1}{\mathrm {sinh}\left (2\,\ln \left (c\,x\right )\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(1/sinh(2*log(c*x)))^(1/2),x)

[Out]

int(x^5/(1/sinh(2*log(c*x)))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{5}}{\sqrt {\operatorname {csch}{\left (2 \log {\left (c x \right )} \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/csch(2*ln(c*x))**(1/2),x)

[Out]

Integral(x**5/sqrt(csch(2*log(c*x))), x)

________________________________________________________________________________________