Optimal. Leaf size=25 \[ -x+\frac {x^3}{1+e^{e^{1+x} \sqrt {x}}} \]
________________________________________________________________________________________
Rubi [F] time = 3.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-2 e^{2 e^{\frac {1}{2} \left (2 x+\log \left (e^2 x\right )\right )}}+6 x^2+e^{e^{\frac {1}{2} \left (2 x+\log \left (e^2 x\right )\right )}} \left (-4+6 x^2+e^{\frac {1}{2} \left (2 x+\log \left (e^2 x\right )\right )} \left (-x^2-2 x^3\right )\right )}{2+4 e^{e^{\frac {1}{2} \left (2 x+\log \left (e^2 x\right )\right )}}+2 e^{2 e^{\frac {1}{2} \left (2 x+\log \left (e^2 x\right )\right )}}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2-2 e^{2 e^{1+x} \sqrt {x}}+6 x^2-e^{1+e^{1+x} \sqrt {x}+x} x^{5/2} (1+2 x)+e^{e^{1+x} \sqrt {x}} \left (-4+6 x^2\right )}{2 \left (1+e^{e^{1+x} \sqrt {x}}\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {-2-2 e^{2 e^{1+x} \sqrt {x}}+6 x^2-e^{1+e^{1+x} \sqrt {x}+x} x^{5/2} (1+2 x)+e^{e^{1+x} \sqrt {x}} \left (-4+6 x^2\right )}{\left (1+e^{e^{1+x} \sqrt {x}}\right )^2} \, dx\\ &=-\operatorname {Subst}\left (\int \frac {x \left (2+2 e^{2 e^{1+x^2} x}-6 x^4+e^{e^{1+x^2} x} \left (4-6 x^4\right )+e^{1+e^{1+x^2} x+x^2} \left (x^5+2 x^7\right )\right )}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )\\ &=-\operatorname {Subst}\left (\int \left (\frac {2 x}{\left (1+e^{e^{1+x^2} x}\right )^2}+\frac {2 e^{2 e^{1+x^2} x} x}{\left (1+e^{e^{1+x^2} x}\right )^2}-\frac {6 x^5}{\left (1+e^{e^{1+x^2} x}\right )^2}+\frac {e^{1+e^{1+x^2} x+x^2} x^6 \left (1+2 x^2\right )}{\left (1+e^{e^{1+x^2} x}\right )^2}-\frac {2 e^{e^{1+x^2} x} x \left (-2+3 x^4\right )}{\left (1+e^{e^{1+x^2} x}\right )^2}\right ) \, dx,x,\sqrt {x}\right )\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {x}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )\right )-2 \operatorname {Subst}\left (\int \frac {e^{2 e^{1+x^2} x} x}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )+2 \operatorname {Subst}\left (\int \frac {e^{e^{1+x^2} x} x \left (-2+3 x^4\right )}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )+6 \operatorname {Subst}\left (\int \frac {x^5}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )-\operatorname {Subst}\left (\int \frac {e^{1+e^{1+x^2} x+x^2} x^6 \left (1+2 x^2\right )}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {x}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )\right )-2 \operatorname {Subst}\left (\int \frac {e^{2 e^{1+x^2} x} x}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )+2 \operatorname {Subst}\left (\int \left (-\frac {2 e^{e^{1+x^2} x} x}{\left (1+e^{e^{1+x^2} x}\right )^2}+\frac {3 e^{e^{1+x^2} x} x^5}{\left (1+e^{e^{1+x^2} x}\right )^2}\right ) \, dx,x,\sqrt {x}\right )+6 \operatorname {Subst}\left (\int \frac {x^5}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )-\operatorname {Subst}\left (\int \left (\frac {e^{1+e^{1+x^2} x+x^2} x^6}{\left (1+e^{e^{1+x^2} x}\right )^2}+\frac {2 e^{1+e^{1+x^2} x+x^2} x^8}{\left (1+e^{e^{1+x^2} x}\right )^2}\right ) \, dx,x,\sqrt {x}\right )\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {x}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )\right )-2 \operatorname {Subst}\left (\int \frac {e^{2 e^{1+x^2} x} x}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )-2 \operatorname {Subst}\left (\int \frac {e^{1+e^{1+x^2} x+x^2} x^8}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )-4 \operatorname {Subst}\left (\int \frac {e^{e^{1+x^2} x} x}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )+6 \operatorname {Subst}\left (\int \frac {x^5}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )+6 \operatorname {Subst}\left (\int \frac {e^{e^{1+x^2} x} x^5}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )-\operatorname {Subst}\left (\int \frac {e^{1+e^{1+x^2} x+x^2} x^6}{\left (1+e^{e^{1+x^2} x}\right )^2} \, dx,x,\sqrt {x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 30, normalized size = 1.20 \begin {gather*} \frac {1}{2} \left (-2 x+\frac {2 x^3}{1+e^{e^{1+x} \sqrt {x}}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 37, normalized size = 1.48 \begin {gather*} \frac {x^{3} - x e^{\left (e^{\left (x + \frac {1}{2} \, \log \left (x e^{2}\right )\right )}\right )} - x}{e^{\left (e^{\left (x + \frac {1}{2} \, \log \left (x e^{2}\right )\right )}\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {6 \, x^{2} + {\left (6 \, x^{2} - {\left (2 \, x^{3} + x^{2}\right )} e^{\left (x + \frac {1}{2} \, \log \left (x e^{2}\right )\right )} - 4\right )} e^{\left (e^{\left (x + \frac {1}{2} \, \log \left (x e^{2}\right )\right )}\right )} - 2 \, e^{\left (2 \, e^{\left (x + \frac {1}{2} \, \log \left (x e^{2}\right )\right )}\right )} - 2}{2 \, {\left (e^{\left (2 \, e^{\left (x + \frac {1}{2} \, \log \left (x e^{2}\right )\right )}\right )} + 2 \, e^{\left (e^{\left (x + \frac {1}{2} \, \log \left (x e^{2}\right )\right )}\right )} + 1\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 23, normalized size = 0.92
method | result | size |
risch | \(\frac {x^{3}}{{\mathrm e}^{\sqrt {{\mathrm e}^{2} x}\, {\mathrm e}^{x}}+1}-x\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 45, normalized size = 1.80 \begin {gather*} \frac {{\left (x^{3} e^{6} - x e^{6} - x e^{\left (\sqrt {x} e^{\left (x + 1\right )} + 6\right )}\right )} e^{\left (-2\right )}}{e^{4} + e^{\left (\sqrt {x} e^{\left (x + 1\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^3}{{\mathrm {e}}^{\sqrt {x}\,\mathrm {e}\,{\mathrm {e}}^x}+1}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________