Optimal. Leaf size=25 \[ x+\frac {5 \left (-3-x+\log \left (\frac {x}{\log (5)}\right )\right )}{(4+x) \log (19)} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 44, normalized size of antiderivative = 1.76, number of steps used = 9, number of rules used = 7, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {12, 1594, 27, 6742, 1620, 2314, 31} \begin {gather*} x-\frac {5 x \log \left (\frac {x}{\log (5)}\right )}{4 (x+4) \log (19)}+\frac {5 \log (x)}{4 \log (19)}+\frac {5}{(x+4) \log (19)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 1594
Rule 1620
Rule 2314
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {20+\left (16 x+8 x^2+x^3\right ) \log (19)-5 x \log \left (\frac {x}{\log (5)}\right )}{16 x+8 x^2+x^3} \, dx}{\log (19)}\\ &=\frac {\int \frac {20+\left (16 x+8 x^2+x^3\right ) \log (19)-5 x \log \left (\frac {x}{\log (5)}\right )}{x \left (16+8 x+x^2\right )} \, dx}{\log (19)}\\ &=\frac {\int \frac {20+\left (16 x+8 x^2+x^3\right ) \log (19)-5 x \log \left (\frac {x}{\log (5)}\right )}{x (4+x)^2} \, dx}{\log (19)}\\ &=\frac {\int \left (\frac {20+16 x \log (19)+8 x^2 \log (19)+x^3 \log (19)}{x (4+x)^2}-\frac {5 \log \left (\frac {x}{\log (5)}\right )}{(4+x)^2}\right ) \, dx}{\log (19)}\\ &=\frac {\int \frac {20+16 x \log (19)+8 x^2 \log (19)+x^3 \log (19)}{x (4+x)^2} \, dx}{\log (19)}-\frac {5 \int \frac {\log \left (\frac {x}{\log (5)}\right )}{(4+x)^2} \, dx}{\log (19)}\\ &=-\frac {5 x \log \left (\frac {x}{\log (5)}\right )}{4 (4+x) \log (19)}+\frac {\int \left (\frac {5}{4 x}-\frac {5}{(4+x)^2}-\frac {5}{4 (4+x)}+\log (19)\right ) \, dx}{\log (19)}+\frac {5 \int \frac {1}{4+x} \, dx}{4 \log (19)}\\ &=x+\frac {5}{(4+x) \log (19)}+\frac {5 \log (x)}{4 \log (19)}-\frac {5 x \log \left (\frac {x}{\log (5)}\right )}{4 (4+x) \log (19)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 1.04 \begin {gather*} \frac {x \log (19)+\frac {5 \left (1+\log \left (\frac {x}{\log (5)}\right )\right )}{4+x}}{\log (19)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 31, normalized size = 1.24 \begin {gather*} \frac {{\left (x^{2} + 4 \, x\right )} \log \left (19\right ) + 5 \, \log \left (\frac {x}{\log \relax (5)}\right ) + 5}{{\left (x + 4\right )} \log \left (19\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 31, normalized size = 1.24 \begin {gather*} \frac {x \log \left (19\right ) - \frac {5 \, {\left (\log \left (\log \relax (5)\right ) - 1\right )}}{x + 4} + \frac {5 \, \log \relax (x)}{x + 4}}{\log \left (19\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 36, normalized size = 1.44
method | result | size |
norman | \(\frac {x^{2}+\frac {5 \ln \left (\frac {x}{\ln \relax (5)}\right )}{\ln \left (19\right )}-\frac {16 \ln \left (19\right )-5}{\ln \left (19\right )}}{4+x}\) | \(36\) |
risch | \(\frac {5 \ln \left (\frac {x}{\ln \relax (5)}\right )}{\ln \left (19\right ) \left (4+x \right )}+\frac {\ln \left (19\right ) x^{2}+4 x \ln \left (19\right )+5}{\ln \left (19\right ) \left (4+x \right )}\) | \(43\) |
derivativedivides | \(\frac {\ln \relax (5) \left (-\frac {5 \ln \left (\frac {x}{\ln \relax (5)}\right ) x}{4 \ln \relax (5) \left (4+x \right )}+\frac {5 \ln \left (\frac {x}{\ln \relax (5)}\right )}{4 \ln \relax (5)}+\frac {5}{\ln \relax (5) \left (4+x \right )}+\frac {\ln \left (19\right ) x}{\ln \relax (5)}\right )}{\ln \left (19\right )}\) | \(60\) |
default | \(\frac {\ln \relax (5) \left (-\frac {5 \ln \left (\frac {x}{\ln \relax (5)}\right ) x}{4 \ln \relax (5) \left (4+x \right )}+\frac {5 \ln \left (\frac {x}{\ln \relax (5)}\right )}{4 \ln \relax (5)}+\frac {5}{\ln \relax (5) \left (4+x \right )}+\frac {\ln \left (19\right ) x}{\ln \relax (5)}\right )}{\ln \left (19\right )}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 70, normalized size = 2.80 \begin {gather*} \frac {{\left (x - \frac {16}{x + 4} - 8 \, \log \left (x + 4\right )\right )} \log \left (19\right ) + 8 \, {\left (\frac {4}{x + 4} + \log \left (x + 4\right )\right )} \log \left (19\right ) - \frac {16 \, \log \left (19\right )}{x + 4} + \frac {5 \, \log \left (\frac {x}{\log \relax (5)}\right )}{x + 4} + \frac {5}{x + 4}}{\log \left (19\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.89, size = 23, normalized size = 0.92 \begin {gather*} x+\frac {5\,\ln \left (\frac {x}{\ln \relax (5)}\right )+5}{\ln \left (19\right )\,\left (x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 31, normalized size = 1.24 \begin {gather*} x + \frac {5 \log {\left (\frac {x}{\log {\relax (5 )}} \right )}}{x \log {\left (19 \right )} + 4 \log {\left (19 \right )}} + \frac {5}{x \log {\left (19 \right )} + 4 \log {\left (19 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________