Optimal. Leaf size=26 \[ \frac {x}{-e^{e^{2 x}}+e^{x+\frac {256}{\log ^2(\log (x))}}+x} \]
________________________________________________________________________________________
Rubi [F] time = 8.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^{2 x}} \left (-1+2 e^{2 x} x\right ) \log (x) \log ^3(\log (x))+e^{\frac {256+x \log ^2(\log (x))}{\log ^2(\log (x))}} \left (512+(1-x) \log (x) \log ^3(\log (x))\right )}{e^{\frac {2 \left (256+x \log ^2(\log (x))\right )}{\log ^2(\log (x))}} \log (x) \log ^3(\log (x))+e^{\frac {256+x \log ^2(\log (x))}{\log ^2(\log (x))}} \left (-2 e^{e^{2 x}} \log (x)+2 x \log (x)\right ) \log ^3(\log (x))+\left (e^{2 e^{2 x}} \log (x)-2 e^{e^{2 x}} x \log (x)+x^2 \log (x)\right ) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {512 e^{x+\frac {256}{\log ^2(\log (x))}}+\left (-e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}} (-1+x)+2 e^{e^{2 x}+2 x} x\right ) \log (x) \log ^3(\log (x))}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))} \, dx\\ &=\int \left (\frac {-512-\log (x) \log ^3(\log (x))+x \log (x) \log ^3(\log (x))}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right ) \log (x) \log ^3(\log (x))}+\frac {512 e^{e^{2 x}}-512 x-x \log (x) \log ^3(\log (x))-e^{e^{2 x}} x \log (x) \log ^3(\log (x))+2 e^{e^{2 x}+2 x} x \log (x) \log ^3(\log (x))+x^2 \log (x) \log ^3(\log (x))}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))}\right ) \, dx\\ &=\int \frac {-512-\log (x) \log ^3(\log (x))+x \log (x) \log ^3(\log (x))}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right ) \log (x) \log ^3(\log (x))} \, dx+\int \frac {512 e^{e^{2 x}}-512 x-x \log (x) \log ^3(\log (x))-e^{e^{2 x}} x \log (x) \log ^3(\log (x))+2 e^{e^{2 x}+2 x} x \log (x) \log ^3(\log (x))+x^2 \log (x) \log ^3(\log (x))}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))} \, dx\\ &=\int \frac {-512+(-1+x) \log (x) \log ^3(\log (x))}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right ) \log (x) \log ^3(\log (x))} \, dx+\int \frac {512 \left (e^{e^{2 x}}-x\right )+x \left (-1-e^{e^{2 x}}+2 e^{e^{2 x}+2 x}+x\right ) \log (x) \log ^3(\log (x))}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))} \, dx\\ &=\int \left (-\frac {1}{e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x}+\frac {x}{e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x}-\frac {512}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right ) \log (x) \log ^3(\log (x))}\right ) \, dx+\int \left (-\frac {x}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2}-\frac {e^{e^{2 x}} x}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2}+\frac {x^2}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2}+\frac {2 e^{e^{2 x}+2 x} x}{\left (-e^{e^{2 x}}+e^{x+\frac {256}{\log ^2(\log (x))}}+x\right )^2}+\frac {512 e^{e^{2 x}}}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))}-\frac {512 x}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))}\right ) \, dx\\ &=2 \int \frac {e^{e^{2 x}+2 x} x}{\left (-e^{e^{2 x}}+e^{x+\frac {256}{\log ^2(\log (x))}}+x\right )^2} \, dx+512 \int \frac {e^{e^{2 x}}}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))} \, dx-512 \int \frac {1}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right ) \log (x) \log ^3(\log (x))} \, dx-512 \int \frac {x}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2 \log (x) \log ^3(\log (x))} \, dx-\int \frac {1}{e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x} \, dx-\int \frac {x}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2} \, dx-\int \frac {e^{e^{2 x}} x}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2} \, dx+\int \frac {x}{e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x} \, dx+\int \frac {x^2}{\left (e^{e^{2 x}}-e^{x+\frac {256}{\log ^2(\log (x))}}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 26, normalized size = 1.00 \begin {gather*} \frac {x}{-e^{e^{2 x}}+e^{x+\frac {256}{\log ^2(\log (x))}}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 29, normalized size = 1.12 \begin {gather*} \frac {x}{x + e^{\left (\frac {x \log \left (\log \relax (x)\right )^{2} + 256}{\log \left (\log \relax (x)\right )^{2}}\right )} - e^{\left (e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 30, normalized size = 1.15
method | result | size |
risch | \(\frac {x}{x +{\mathrm e}^{\frac {x \ln \left (\ln \relax (x )\right )^{2}+256}{\ln \left (\ln \relax (x )\right )^{2}}}-{\mathrm e}^{{\mathrm e}^{2 x}}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 23, normalized size = 0.88 \begin {gather*} \frac {x}{x + e^{\left (x + \frac {256}{\log \left (\log \relax (x)\right )^{2}}\right )} - e^{\left (e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.14, size = 215, normalized size = 8.27 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,\left (x^3\,{\ln \left (\ln \relax (x)\right )}^6\,{\ln \relax (x)}^2-512\,x^2\,{\ln \left (\ln \relax (x)\right )}^3\,\ln \relax (x)\right )+x^3\,{\ln \left (\ln \relax (x)\right )}^6\,{\ln \relax (x)}^2-x^4\,{\ln \left (\ln \relax (x)\right )}^6\,{\ln \relax (x)}^2+512\,x^3\,{\ln \left (\ln \relax (x)\right )}^3\,\ln \relax (x)-2\,x^3\,{\ln \left (\ln \relax (x)\right )}^6\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^{2\,x}}\,{\ln \relax (x)}^2}{\left (x+{\mathrm {e}}^{x+\frac {256}{{\ln \left (\ln \relax (x)\right )}^2}}-{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\right )\,\left (x^2\,{\ln \left (\ln \relax (x)\right )}^6\,{\ln \relax (x)}^2-x^3\,{\ln \left (\ln \relax (x)\right )}^6\,{\ln \relax (x)}^2+512\,x^2\,{\ln \left (\ln \relax (x)\right )}^3\,\ln \relax (x)-2\,x^2\,{\ln \left (\ln \relax (x)\right )}^6\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^{2\,x}}\,{\ln \relax (x)}^2-512\,x\,{\ln \left (\ln \relax (x)\right )}^3\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,\ln \relax (x)+x^2\,{\ln \left (\ln \relax (x)\right )}^6\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\ln \relax (x)}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.77, size = 29, normalized size = 1.12 \begin {gather*} - \frac {x}{- x - e^{\frac {x \log {\left (\log {\relax (x )} \right )}^{2} + 256}{\log {\left (\log {\relax (x )} \right )}^{2}}} + e^{e^{2 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________