3.93.18 \(\int \frac {-32+32 x^2+(-32+32 x) \log (3)+(16 x^3-16 x^4) \log (1+x+\log (3))+(24 x^2-8 x^3-32 x^4+(24 x^2-32 x^3) \log (3)) \log ^2(1+x+\log (3))+4 x^6 \log ^3(1+x+\log (3))+(6 x^5+6 x^6+6 x^5 \log (3)) \log ^4(1+x+\log (3))}{1+x+\log (3)} \, dx\)
Optimal. Leaf size=28 \[ 4+x^2 \left (4-\frac {4}{x}-x^2 \log ^2(1+x+\log (3))\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 19, normalized size of antiderivative = 0.68,
number of steps used = 3, number of rules used = 3, integrand size = 120, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used
= {6688, 12, 6686} \begin {gather*} \left (x^3 \log ^2(x+1+\log (3))-4 x+4\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
Int[(-32 + 32*x^2 + (-32 + 32*x)*Log[3] + (16*x^3 - 16*x^4)*Log[1 + x + Log[3]] + (24*x^2 - 8*x^3 - 32*x^4 + (
24*x^2 - 32*x^3)*Log[3])*Log[1 + x + Log[3]]^2 + 4*x^6*Log[1 + x + Log[3]]^3 + (6*x^5 + 6*x^6 + 6*x^5*Log[3])*
Log[1 + x + Log[3]]^4)/(1 + x + Log[3]),x]
[Out]
(4 - 4*x + x^3*Log[1 + x + Log[3]]^2)^2
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (4-4 x+x^3 \log ^2(1+x+\log (3))\right ) \left (-4 (1+x+\log (3))+2 x^3 \log (1+x+\log (3))+3 x^2 (1+x+\log (3)) \log ^2(1+x+\log (3))\right )}{1+x+\log (3)} \, dx\\ &=2 \int \frac {\left (4-4 x+x^3 \log ^2(1+x+\log (3))\right ) \left (-4 (1+x+\log (3))+2 x^3 \log (1+x+\log (3))+3 x^2 (1+x+\log (3)) \log ^2(1+x+\log (3))\right )}{1+x+\log (3)} \, dx\\ &=\left (4-4 x+x^3 \log ^2(1+x+\log (3))\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 19, normalized size = 0.68 \begin {gather*} \left (4-4 x+x^3 \log ^2(1+x+\log (3))\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
Integrate[(-32 + 32*x^2 + (-32 + 32*x)*Log[3] + (16*x^3 - 16*x^4)*Log[1 + x + Log[3]] + (24*x^2 - 8*x^3 - 32*x
^4 + (24*x^2 - 32*x^3)*Log[3])*Log[1 + x + Log[3]]^2 + 4*x^6*Log[1 + x + Log[3]]^3 + (6*x^5 + 6*x^6 + 6*x^5*Lo
g[3])*Log[1 + x + Log[3]]^4)/(1 + x + Log[3]),x]
[Out]
(4 - 4*x + x^3*Log[1 + x + Log[3]]^2)^2
________________________________________________________________________________________
fricas [A] time = 0.84, size = 40, normalized size = 1.43 \begin {gather*} x^{6} \log \left (x + \log \relax (3) + 1\right )^{4} - 8 \, {\left (x^{4} - x^{3}\right )} \log \left (x + \log \relax (3) + 1\right )^{2} + 16 \, x^{2} - 32 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x^5*log(3)+6*x^6+6*x^5)*log(x+log(3)+1)^4+4*x^6*log(x+log(3)+1)^3+((-32*x^3+24*x^2)*log(3)-32*x^
4-8*x^3+24*x^2)*log(x+log(3)+1)^2+(-16*x^4+16*x^3)*log(x+log(3)+1)+(32*x-32)*log(3)+32*x^2-32)/(x+log(3)+1),x,
algorithm="fricas")
[Out]
x^6*log(x + log(3) + 1)^4 - 8*(x^4 - x^3)*log(x + log(3) + 1)^2 + 16*x^2 - 32*x
________________________________________________________________________________________
giac [A] time = 0.26, size = 40, normalized size = 1.43 \begin {gather*} x^{6} \log \left (x + \log \relax (3) + 1\right )^{4} - 8 \, {\left (x^{4} - x^{3}\right )} \log \left (x + \log \relax (3) + 1\right )^{2} + 16 \, x^{2} - 32 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x^5*log(3)+6*x^6+6*x^5)*log(x+log(3)+1)^4+4*x^6*log(x+log(3)+1)^3+((-32*x^3+24*x^2)*log(3)-32*x^
4-8*x^3+24*x^2)*log(x+log(3)+1)^2+(-16*x^4+16*x^3)*log(x+log(3)+1)+(32*x-32)*log(3)+32*x^2-32)/(x+log(3)+1),x,
algorithm="giac")
[Out]
x^6*log(x + log(3) + 1)^4 - 8*(x^4 - x^3)*log(x + log(3) + 1)^2 + 16*x^2 - 32*x
________________________________________________________________________________________
maple [A] time = 0.51, size = 42, normalized size = 1.50
|
|
|
method |
result |
size |
|
|
|
risch |
\(\ln \left (x +\ln \relax (3)+1\right )^{4} x^{6}+\left (-8 x^{4}+8 x^{3}\right ) \ln \left (x +\ln \relax (3)+1\right )^{2}+16 x^{2}-32 x\) |
\(42\) |
derivativedivides |
\(\text {Expression too large to display}\) |
\(2873\) |
default |
\(\text {Expression too large to display}\) |
\(2873\) |
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((6*x^5*ln(3)+6*x^6+6*x^5)*ln(x+ln(3)+1)^4+4*x^6*ln(x+ln(3)+1)^3+((-32*x^3+24*x^2)*ln(3)-32*x^4-8*x^3+24*x
^2)*ln(x+ln(3)+1)^2+(-16*x^4+16*x^3)*ln(x+ln(3)+1)+(32*x-32)*ln(3)+32*x^2-32)/(x+ln(3)+1),x,method=_RETURNVERB
OSE)
[Out]
ln(x+ln(3)+1)^4*x^6+(-8*x^4+8*x^3)*ln(x+ln(3)+1)^2+16*x^2-32*x
________________________________________________________________________________________
maxima [B] time = 0.51, size = 3532, normalized size = 126.14 result too large to
display
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x^5*log(3)+6*x^6+6*x^5)*log(x+log(3)+1)^4+4*x^6*log(x+log(3)+1)^3+((-32*x^3+24*x^2)*log(3)-32*x^
4-8*x^3+24*x^2)*log(x+log(3)+1)^2+(-16*x^4+16*x^3)*log(x+log(3)+1)+(32*x-32)*log(3)+32*x^2-32)/(x+log(3)+1),x,
algorithm="maxima")
[Out]
1/54*(54*log(x + log(3) + 1)^4 - 36*log(x + log(3) + 1)^3 + 18*log(x + log(3) + 1)^2 - 6*log(x + log(3) + 1) +
1)*(x + log(3) + 1)^6 + 1/54*(36*log(x + log(3) + 1)^3 - 18*log(x + log(3) + 1)^2 + 6*log(x + log(3) + 1) - 1
)*(x + log(3) + 1)^6 - 36/3125*(625*(log(3) + 1)*log(x + log(3) + 1)^4 - 500*(log(3) + 1)*log(x + log(3) + 1)^
3 + 300*(log(3) + 1)*log(x + log(3) + 1)^2 - 120*(log(3) + 1)*log(x + log(3) + 1) + 24*log(3) + 24)*(x + log(3
) + 1)^5 - 24/625*(125*(log(3) + 1)*log(x + log(3) + 1)^3 - 75*(log(3) + 1)*log(x + log(3) + 1)^2 + 30*(log(3)
+ 1)*log(x + log(3) + 1) - 6*log(3) - 6)*(x + log(3) + 1)^5 + 6/3125*(625*log(x + log(3) + 1)^4 - 500*log(x +
log(3) + 1)^3 + 300*log(x + log(3) + 1)^2 - 120*log(x + log(3) + 1) + 24)*(x + log(3) + 1)^5 + 6/5*(log(3)^6
+ 6*log(3)^5 + 15*log(3)^4 + 20*log(3)^3 + 15*log(3)^2 + 6*log(3) + 1)*log(x + log(3) + 1)^5 - 6/5*(log(3)^5 +
5*log(3)^4 + 10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1)^5 + 45/64*(32*(log(3)^2 + 2*log(3)
+ 1)*log(x + log(3) + 1)^4 - 32*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)^3 + 24*(log(3)^2 + 2*log(3) + 1
)*log(x + log(3) + 1)^2 + 3*log(3)^2 - 12*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1) + 6*log(3) + 3)*(x + l
og(3) + 1)^4 - 15/64*(32*(log(3) + 1)*log(x + log(3) + 1)^4 - 32*(log(3) + 1)*log(x + log(3) + 1)^3 + 24*(log(
3) + 1)*log(x + log(3) + 1)^2 - 12*(log(3) + 1)*log(x + log(3) + 1) + 3*log(3) + 3)*(x + log(3) + 1)^4 + 15/32
*(32*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)^3 - 24*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)^2 - 3*
log(3)^2 + 12*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1) - 6*log(3) - 3)*(x + log(3) + 1)^4 - (8*log(x + lo
g(3) + 1)^2 - 4*log(x + log(3) + 1) + 1)*(x + log(3) + 1)^4 + (log(3)^6 + 6*log(3)^5 + 15*log(3)^4 + 20*log(3)
^3 + 15*log(3)^2 + 6*log(3) + 1)*log(x + log(3) + 1)^4 - 40/27*(27*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(
x + log(3) + 1)^4 - 36*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^3 + 8*log(3)^3 + 36*(log(3)^
3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^2 + 24*log(3)^2 - 24*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)
*log(x + log(3) + 1) + 24*log(3) + 8)*(x + log(3) + 1)^3 + 20/27*(27*(log(3)^2 + 2*log(3) + 1)*log(x + log(3)
+ 1)^4 - 36*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)^3 + 36*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)
^2 + 8*log(3)^2 - 24*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1) + 16*log(3) + 8)*(x + log(3) + 1)^3 - 80/27
*(9*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^3 - 2*log(3)^3 - 9*(log(3)^3 + 3*log(3)^2 + 3*l
og(3) + 1)*log(x + log(3) + 1)^2 - 6*log(3)^2 + 6*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1) -
6*log(3) - 2)*(x + log(3) + 1)^3 + 128/27*(9*(log(3) + 1)*log(x + log(3) + 1)^2 - 6*(log(3) + 1)*log(x + log(
3) + 1) + 2*log(3) + 2)*(x + log(3) + 1)^3 - 8/27*(9*log(x + log(3) + 1)^2 - 6*log(x + log(3) + 1) + 2)*(x + l
og(3) + 1)^3 + x^4 - 28/9*x^3*(log(3) + 1) - 32/3*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x +
log(3) + 1)^3 + 8/3*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^3 + 8*(log(3)^2 + 2*log(3) + 1)
*log(x + log(3) + 1)^3 + 45/2*(2*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^4 + 3
*log(3)^4 - 4*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^3 + 12*log(3)^3 + 6*(log
(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^2 + 18*log(3)^2 - 6*(log(3)^4 + 4*log(3)^3
+ 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1) + 12*log(3) + 3)*(x + log(3) + 1)^2 - 15*(2*(log(3)^3 + 3*lo
g(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^4 - 4*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^3
+ 3*log(3)^3 + 6*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^2 + 9*log(3)^2 - 6*(log(3)^3 + 3*l
og(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1) + 9*log(3) + 3)*(x + log(3) + 1)^2 - 15/2*(3*log(3)^4 - 4*(log(3)^
4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^3 + 12*log(3)^3 + 6*(log(3)^4 + 4*log(3)^3 + 6
*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^2 + 18*log(3)^2 - 6*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(
3) + 1)*log(x + log(3) + 1) + 12*log(3) + 3)*(x + log(3) + 1)^2 - 48*(2*(log(3)^2 + 2*log(3) + 1)*log(x + log(
3) + 1)^2 + log(3)^2 - 2*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1) + 2*log(3) + 1)*(x + log(3) + 1)^2 + 6*
(2*(log(3) + 1)*log(x + log(3) + 1)^2 - 2*(log(3) + 1)*log(x + log(3) + 1) + log(3) + 1)*(x + log(3) + 1)^2 +
6*(2*log(x + log(3) + 1)^2 - 2*log(x + log(3) + 1) + 1)*(x + log(3) + 1)^2 + 26/3*(log(3)^2 + 2*log(3) + 1)*x^
2 - 16/9*x^3 + 20/3*x^2*(log(3) + 1) + 8*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) +
1)^2 + 8*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^2 - 36*(24*log(3)^5 + (log(3)^5 + 5*log(3)
^4 + 10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1)^4 + 120*log(3)^4 - 4*(log(3)^5 + 5*log(3)^4
+ 10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1)^3 + 240*log(3)^3 + 12*(log(3)^5 + 5*log(3)^4
+ 10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1)^2 + 240*log(3)^2 - 24*(log(3)^5 + 5*log(3)^4 +
10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1) + 120*log(3) + 24)*(x + log(3) + 1) + 24*(6*log
(3)^5 + 30*log(3)^4 - (log(3)^5 + 5*log(3)^4 + 10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1)^3
+ 60*log(3)^3 + 3*(log(3)^5 + 5*log(3)^4 + 10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1)^2 +
60*log(3)^2 - 6*(log(3)^5 + 5*log(3)^4 + 10*log(3)^3 + 10*log(3)^2 + 5*log(3) + 1)*log(x + log(3) + 1) + 30*lo
g(3) + 6)*(x + log(3) + 1) + 30*((log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^4 + 2
4*log(3)^4 - 4*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^3 + 96*log(3)^3 + 12*(l
og(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^2 + 144*log(3)^2 - 24*(log(3)^4 + 4*log(
3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1) + 96*log(3) + 24)*(x + log(3) + 1) + 128*(2*log(3)^3 + (
log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^2 + 6*log(3)^2 - 2*(log(3)^3 + 3*log(3)^2 + 3*log(3)
+ 1)*log(x + log(3) + 1) + 6*log(3) + 2)*(x + log(3) + 1) - 24*((log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)
^2 + 2*log(3)^2 - 2*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1) + 4*log(3) + 2)*(x + log(3) + 1) - 48*((log(
3) + 1)*log(x + log(3) + 1)^2 - 2*(log(3) + 1)*log(x + log(3) + 1) + 2*log(3) + 2)*(x + log(3) + 1) - 100/3*(l
og(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*x - 88/3*(log(3)^2 + 2*log(3) + 1)*x + 16*x^2 - 32*x*(log(3) + 1) + 1/540
0000*(10368*(625*log(x + log(3) + 1)^4 - 500*log(x + log(3) + 1)^3 + 300*log(x + log(3) + 1)^2 - 120*log(x + l
og(3) + 1) + 24)*(x + log(3) + 1)^5 - 6480000*(log(3)^5 + 5*log(3)^4 + 10*log(3)^3 + 10*log(3)^2 + 5*log(3) +
1)*log(x + log(3) + 1)^5 - 1265625*(32*(log(3) + 1)*log(x + log(3) + 1)^4 - 32*(log(3) + 1)*log(x + log(3) + 1
)^3 + 24*(log(3) + 1)*log(x + log(3) + 1)^2 - 12*(log(3) + 1)*log(x + log(3) + 1) + 3*log(3) + 3)*(x + log(3)
+ 1)^4 + 4000000*(27*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)^4 - 36*(log(3)^2 + 2*log(3) + 1)*log(x + lo
g(3) + 1)^3 + 36*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)^2 + 8*log(3)^2 - 24*(log(3)^2 + 2*log(3) + 1)*l
og(x + log(3) + 1) + 16*log(3) + 8)*(x + log(3) + 1)^3 - 81000000*(2*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*lo
g(x + log(3) + 1)^4 - 4*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^3 + 3*log(3)^3 + 6*(log(3)^
3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^2 + 9*log(3)^2 - 6*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*l
og(x + log(3) + 1) + 9*log(3) + 3)*(x + log(3) + 1)^2 + 162000000*((log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log
(3) + 1)*log(x + log(3) + 1)^4 + 24*log(3)^4 - 4*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + l
og(3) + 1)^3 + 96*log(3)^3 + 12*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1)^2 + 14
4*log(3)^2 - 24*(log(3)^4 + 4*log(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1) + 96*log(3) + 24)*(x +
log(3) + 1))*log(3) - 8/27*(4*(9*log(x + log(3) + 1)^2 - 6*log(x + log(3) + 1) + 2)*(x + log(3) + 1)^3 - 36*(
log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1)^3 - 81*(2*(log(3) + 1)*log(x + log(3) + 1)^2 - 2*(lo
g(3) + 1)*log(x + log(3) + 1) + log(3) + 1)*(x + log(3) + 1)^2 + 324*((log(3)^2 + 2*log(3) + 1)*log(x + log(3)
+ 1)^2 + 2*log(3)^2 - 2*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1) + 4*log(3) + 2)*(x + log(3) + 1))*log(3
) + 2*(4*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1)^3 + 3*(2*log(x + log(3) + 1)^2 - 2*log(x + log(3) + 1)
+ 1)*(x + log(3) + 1)^2 - 24*((log(3) + 1)*log(x + log(3) + 1)^2 - 2*(log(3) + 1)*log(x + log(3) + 1) + 2*log(
3) + 2)*(x + log(3) + 1))*log(3) - 32*((log(3) + 1)*log(x + log(3) + 1) - x)*log(3) - 4/3*(3*x^4 - 4*x^3*(log(
3) + 1) + 6*(log(3)^2 + 2*log(3) + 1)*x^2 - 12*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*x + 12*(log(3)^4 + 4*log
(3)^3 + 6*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1))*log(x + log(3) + 1) + 100/3*(log(3)^4 + 4*log(3)^3 + 6
*log(3)^2 + 4*log(3) + 1)*log(x + log(3) + 1) + 8/3*(2*x^3 - 3*x^2*(log(3) + 1) + 6*(log(3)^2 + 2*log(3) + 1)*
x - 6*(log(3)^3 + 3*log(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1))*log(x + log(3) + 1) + 88/3*(log(3)^3 + 3*log
(3)^2 + 3*log(3) + 1)*log(x + log(3) + 1) + 32*(log(3)^2 + 2*log(3) + 1)*log(x + log(3) + 1) - 32*log(3)*log(x
+ log(3) + 1) - 32*log(x + log(3) + 1)
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(3)*(32*x - 32) + log(x + log(3) + 1)^2*(log(3)*(24*x^2 - 32*x^3) + 24*x^2 - 8*x^3 - 32*x^4) + 4*x^6*l
og(x + log(3) + 1)^3 + 32*x^2 + log(x + log(3) + 1)*(16*x^3 - 16*x^4) + log(x + log(3) + 1)^4*(6*x^5*log(3) +
6*x^5 + 6*x^6) - 32)/(x + log(3) + 1),x)
[Out]
\text{Hanged}
________________________________________________________________________________________
sympy [A] time = 0.20, size = 41, normalized size = 1.46 \begin {gather*} x^{6} \log {\left (x + 1 + \log {\relax (3 )} \right )}^{4} + 16 x^{2} - 32 x + \left (- 8 x^{4} + 8 x^{3}\right ) \log {\left (x + 1 + \log {\relax (3 )} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((6*x**5*ln(3)+6*x**6+6*x**5)*ln(x+ln(3)+1)**4+4*x**6*ln(x+ln(3)+1)**3+((-32*x**3+24*x**2)*ln(3)-32*
x**4-8*x**3+24*x**2)*ln(x+ln(3)+1)**2+(-16*x**4+16*x**3)*ln(x+ln(3)+1)+(32*x-32)*ln(3)+32*x**2-32)/(x+ln(3)+1)
,x)
[Out]
x**6*log(x + 1 + log(3))**4 + 16*x**2 - 32*x + (-8*x**4 + 8*x**3)*log(x + 1 + log(3))**2
________________________________________________________________________________________