Optimal. Leaf size=19 \[ e^2 \log \left (2+x+16 e^2 \log ^2(-2 x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 x+32 e^4 \log (-2 x)}{2 x+x^2+16 e^2 x \log ^2(-2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 \left (x+32 e^2 \log (-2 x)\right )}{2 x+x^2+16 e^2 x \log ^2(-2 x)} \, dx\\ &=e^2 \int \frac {x+32 e^2 \log (-2 x)}{2 x+x^2+16 e^2 x \log ^2(-2 x)} \, dx\\ &=e^2 \int \left (\frac {1}{2+x+16 e^2 \log ^2(-2 x)}+\frac {32 e^2 \log (-2 x)}{x \left (2+x+16 e^2 \log ^2(-2 x)\right )}\right ) \, dx\\ &=e^2 \int \frac {1}{2+x+16 e^2 \log ^2(-2 x)} \, dx+\left (32 e^4\right ) \int \frac {\log (-2 x)}{x \left (2+x+16 e^2 \log ^2(-2 x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 21, normalized size = 1.11 \begin {gather*} e^2 \log \left (4+2 x+32 e^2 \log ^2(-2 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 17, normalized size = 0.89 \begin {gather*} e^{2} \log \left (16 \, e^{2} \log \left (-2 \, x\right )^{2} + x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 17, normalized size = 0.89 \begin {gather*} e^{2} \log \left (16 \, e^{2} \log \left (-2 \, x\right )^{2} + x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{2} \ln \left (\ln \left (-2 x \right )^{2}+\frac {\left (2+x \right ) {\mathrm e}^{-2}}{16}\right )\) | \(19\) |
norman | \({\mathrm e}^{2} \ln \left (2+16 \,{\mathrm e}^{2} \ln \left (-2 x \right )^{2}+x \right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 39, normalized size = 2.05 \begin {gather*} e^{2} \log \left (\frac {1}{16} \, {\left (16 \, e^{2} \log \relax (2)^{2} + 32 \, e^{2} \log \relax (2) \log \left (-x\right ) + 16 \, e^{2} \log \left (-x\right )^{2} + x + 2\right )} e^{\left (-2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.29, size = 17, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^2\,\ln \left (16\,{\mathrm {e}}^2\,{\ln \left (-2\,x\right )}^2+x+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 1.05 \begin {gather*} e^{2} \log {\left (\frac {x + 2}{16 e^{2}} + \log {\left (- 2 x \right )}^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________