Optimal. Leaf size=25 \[ \frac {e^x \left (-\frac {1}{2}+2 x\right )^2}{\left (-2+\frac {e^2 x}{4}\right )^2} \]
________________________________________________________________________________________
Rubi [C] time = 0.41, antiderivative size = 192, normalized size of antiderivative = 7.68, number of steps used = 11, number of rules used = 6, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6688, 12, 2199, 2194, 2177, 2178} \begin {gather*} 4 e^{\frac {8}{e^2}-8} \left (1024-320 e^2+9 e^4\right ) \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )-4 e^{\frac {8}{e^2}-8} \left (32-e^2\right )^2 \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )+32 e^{\frac {8}{e^2}-6} \left (32-e^2\right ) \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )+64 e^{x-4}+\frac {4 \left (1024-320 e^2+9 e^4\right ) e^{x-6}}{8-e^2 x}-\frac {4 \left (32-e^2\right )^2 e^{x-6}}{8-e^2 x}+\frac {4 \left (32-e^2\right )^2 e^{x-4}}{\left (8-e^2 x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^x (1-4 x) \left (-2 \left (28-e^2\right )-\left (32+e^2\right ) x+4 e^2 x^2\right )}{\left (8-e^2 x\right )^3} \, dx\\ &=4 \int \frac {e^x (1-4 x) \left (-2 \left (28-e^2\right )-\left (32+e^2\right ) x+4 e^2 x^2\right )}{\left (8-e^2 x\right )^3} \, dx\\ &=4 \int \left (16 e^{-4+x}-\frac {2 e^{-2+x} \left (-32+e^2\right )^2}{\left (-8+e^2 x\right )^3}+\frac {e^{-4+x} \left (1024-320 e^2+9 e^4\right )}{\left (-8+e^2 x\right )^2}-\frac {8 e^{-4+x} \left (-32+e^2\right )}{-8+e^2 x}\right ) \, dx\\ &=64 \int e^{-4+x} \, dx+\left (32 \left (32-e^2\right )\right ) \int \frac {e^{-4+x}}{-8+e^2 x} \, dx-\left (8 \left (32-e^2\right )^2\right ) \int \frac {e^{-2+x}}{\left (-8+e^2 x\right )^3} \, dx+\left (4 \left (1024-320 e^2+9 e^4\right )\right ) \int \frac {e^{-4+x}}{\left (-8+e^2 x\right )^2} \, dx\\ &=64 e^{-4+x}+\frac {4 e^{-4+x} \left (32-e^2\right )^2}{\left (8-e^2 x\right )^2}+\frac {4 e^{-6+x} \left (1024-320 e^2+9 e^4\right )}{8-e^2 x}+32 e^{-6+\frac {8}{e^2}} \left (32-e^2\right ) \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )-\frac {\left (4 \left (32-e^2\right )^2\right ) \int \frac {e^{-2+x}}{\left (-8+e^2 x\right )^2} \, dx}{e^2}+\frac {\left (4 \left (1024-320 e^2+9 e^4\right )\right ) \int \frac {e^{-4+x}}{-8+e^2 x} \, dx}{e^2}\\ &=64 e^{-4+x}+\frac {4 e^{-4+x} \left (32-e^2\right )^2}{\left (8-e^2 x\right )^2}-\frac {4 e^{-6+x} \left (32-e^2\right )^2}{8-e^2 x}+\frac {4 e^{-6+x} \left (1024-320 e^2+9 e^4\right )}{8-e^2 x}+32 e^{-6+\frac {8}{e^2}} \left (32-e^2\right ) \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )+4 e^{-8+\frac {8}{e^2}} \left (1024-320 e^2+9 e^4\right ) \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )-\frac {\left (4 \left (32-e^2\right )^2\right ) \int \frac {e^{-2+x}}{-8+e^2 x} \, dx}{e^4}\\ &=64 e^{-4+x}+\frac {4 e^{-4+x} \left (32-e^2\right )^2}{\left (8-e^2 x\right )^2}-\frac {4 e^{-6+x} \left (32-e^2\right )^2}{8-e^2 x}+\frac {4 e^{-6+x} \left (1024-320 e^2+9 e^4\right )}{8-e^2 x}+32 e^{-6+\frac {8}{e^2}} \left (32-e^2\right ) \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )-4 e^{-8+\frac {8}{e^2}} \left (32-e^2\right )^2 \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )+4 e^{-8+\frac {8}{e^2}} \left (1024-320 e^2+9 e^4\right ) \text {Ei}\left (-\frac {8-e^2 x}{e^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 21, normalized size = 0.84 \begin {gather*} \frac {4 e^x (1-4 x)^2}{\left (-8+e^2 x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.81, size = 53, normalized size = 2.12 \begin {gather*} \frac {{\left (16 \, x^{2} - 8 \, x + 1\right )} e^{\left (x + 6 \, \log \relax (2) - 6\right )}}{4 \, {\left (x^{2} e^{\left (2 \, \log \relax (2) - 2\right )} - 4 \, x e^{\left (4 \, \log \relax (2) - 4\right )} + 4 \, e^{\left (6 \, \log \relax (2) - 6\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 43, normalized size = 1.72
method | result | size |
norman | \(\frac {\left (4 \,{\mathrm e}^{4} {\mathrm e}^{x}-32 x \,{\mathrm e}^{4} {\mathrm e}^{x}+64 x^{2} {\mathrm e}^{4} {\mathrm e}^{x}\right ) {\mathrm e}^{-4}}{\left ({\mathrm e}^{2} x -8\right )^{2}}\) | \(43\) |
gosper | \(\frac {4 \left (4 x -1\right )^{2} {\mathrm e}^{x} {\mathrm e}^{-4}}{64 \,{\mathrm e}^{-4}-4 x \,{\mathrm e}^{2 \ln \relax (2)-2}+x^{2}}\) | \(48\) |
default | \(8 \,{\mathrm e}^{-4} \left (-\frac {{\mathrm e}^{x} \left (-x +8 \,{\mathrm e}^{-2}-1\right )}{2 \left (64 \,{\mathrm e}^{-4}-16 x \,{\mathrm e}^{-2}+x^{2}\right )}+\frac {{\mathrm e}^{8 \,{\mathrm e}^{-2}} \expIntegralEi \left (1, 8 \,{\mathrm e}^{-2}-x \right )}{2}\right )-224 \,{\mathrm e}^{-6} \left (-\frac {{\mathrm e}^{x} \left (-x +8 \,{\mathrm e}^{-2}-1\right )}{2 \left (64 \,{\mathrm e}^{-4}-16 x \,{\mathrm e}^{-2}+x^{2}\right )}+\frac {{\mathrm e}^{8 \,{\mathrm e}^{-2}} \expIntegralEi \left (1, 8 \,{\mathrm e}^{-2}-x \right )}{2}\right )-36 \,{\mathrm e}^{-4} \left (-\frac {{\mathrm e}^{x} \left (32 \,{\mathrm e}^{-4}-4 x \,{\mathrm e}^{-2}+4 \,{\mathrm e}^{-2}-x \right )}{64 \,{\mathrm e}^{-4}-16 x \,{\mathrm e}^{-2}+x^{2}}-\left (-4 \,{\mathrm e}^{-2}-1\right ) {\mathrm e}^{8 \,{\mathrm e}^{-2}} \expIntegralEi \left (1, 8 \,{\mathrm e}^{-2}-x \right )\right )+32 \,{\mathrm e}^{-4} \left (-\frac {16 \,{\mathrm e}^{x} {\mathrm e}^{-2} \left (16 \,{\mathrm e}^{-4}-2 x \,{\mathrm e}^{-2}+6 \,{\mathrm e}^{-2}-x \right )}{64 \,{\mathrm e}^{-4}-16 x \,{\mathrm e}^{-2}+x^{2}}-\left (-32 \,{\mathrm e}^{-4}-16 \,{\mathrm e}^{-2}-1\right ) {\mathrm e}^{8 \,{\mathrm e}^{-2}} \expIntegralEi \left (1, 8 \,{\mathrm e}^{-2}-x \right )\right )-64 \,{\mathrm e}^{-4} \left (-{\mathrm e}^{x}-\frac {64 \,{\mathrm e}^{x} {\mathrm e}^{-4} \left (32 \,{\mathrm e}^{-4}-4 x \,{\mathrm e}^{-2}+20 \,{\mathrm e}^{-2}-3 x \right )}{64 \,{\mathrm e}^{-4}-16 x \,{\mathrm e}^{-2}+x^{2}}-\left (-256 \,{\mathrm e}^{-6}-192 \,{\mathrm e}^{-4}-24 \,{\mathrm e}^{-2}\right ) {\mathrm e}^{8 \,{\mathrm e}^{-2}} \expIntegralEi \left (1, 8 \,{\mathrm e}^{-2}-x \right )\right )+768 \,{\mathrm e}^{-6} \left (-\frac {{\mathrm e}^{x} \left (32 \,{\mathrm e}^{-4}-4 x \,{\mathrm e}^{-2}+4 \,{\mathrm e}^{-2}-x \right )}{64 \,{\mathrm e}^{-4}-16 x \,{\mathrm e}^{-2}+x^{2}}-\left (-4 \,{\mathrm e}^{-2}-1\right ) {\mathrm e}^{8 \,{\mathrm e}^{-2}} \expIntegralEi \left (1, 8 \,{\mathrm e}^{-2}-x \right )\right )+512 \,{\mathrm e}^{-6} \left (-\frac {16 \,{\mathrm e}^{x} {\mathrm e}^{-2} \left (16 \,{\mathrm e}^{-4}-2 x \,{\mathrm e}^{-2}+6 \,{\mathrm e}^{-2}-x \right )}{64 \,{\mathrm e}^{-4}-16 x \,{\mathrm e}^{-2}+x^{2}}-\left (-32 \,{\mathrm e}^{-4}-16 \,{\mathrm e}^{-2}-1\right ) {\mathrm e}^{8 \,{\mathrm e}^{-2}} \expIntegralEi \left (1, 8 \,{\mathrm e}^{-2}-x \right )\right )\) | \(487\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4 \, {\left (16 \, x^{3} e^{2} - 8 \, x^{2} {\left (e^{2} + 16\right )} + x {\left (e^{2} + 64\right )}\right )} e^{x}}{x^{3} e^{6} - 24 \, x^{2} e^{4} + 192 \, x e^{2} - 512} - \frac {224 \, e^{\left (8 \, e^{\left (-2\right )} - 2\right )} E_{3}\left (-{\left (x e^{2} - 8\right )} e^{\left (-2\right )}\right )}{{\left (x e^{2} - 8\right )}^{2}} - \frac {1}{4} \, \int \frac {128 \, {\left (8 \, x e^{2} - 3 \, e^{2} - 64\right )} e^{x}}{x^{4} e^{8} - 32 \, x^{3} e^{6} + 384 \, x^{2} e^{4} - 2048 \, x e^{2} + 4096}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 19, normalized size = 0.76 \begin {gather*} \frac {4\,{\mathrm {e}}^x\,{\left (4\,x-1\right )}^2}{{\left (x\,{\mathrm {e}}^2-8\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 27, normalized size = 1.08 \begin {gather*} \frac {\left (64 x^{2} - 32 x + 4\right ) e^{x}}{x^{2} e^{4} - 16 x e^{2} + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________