Optimal. Leaf size=28 \[ 4 x \left (4+\left (\frac {1}{4}+\frac {x}{4}\right ) x \left (2-\log \left (e^{-x} x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 40, normalized size of antiderivative = 1.43, number of steps used = 5, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {1593, 43, 2554, 14} \begin {gather*} 2 x^3+x^3 \left (-\log \left (e^{-x} x\right )\right )+2 x^2-x^2 \log \left (e^{-x} x\right )+16 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 1593
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=16 x+\frac {3 x^2}{2}+2 x^3+\frac {x^4}{4}+\int \left (-2 x-3 x^2\right ) \log \left (e^{-x} x\right ) \, dx\\ &=16 x+\frac {3 x^2}{2}+2 x^3+\frac {x^4}{4}+\int (-2-3 x) x \log \left (e^{-x} x\right ) \, dx\\ &=16 x+\frac {3 x^2}{2}+2 x^3+\frac {x^4}{4}-x^2 \log \left (e^{-x} x\right )-x^3 \log \left (e^{-x} x\right )-\int x \left (-1+x^2\right ) \, dx\\ &=16 x+\frac {3 x^2}{2}+2 x^3+\frac {x^4}{4}-x^2 \log \left (e^{-x} x\right )-x^3 \log \left (e^{-x} x\right )-\int \left (-x+x^3\right ) \, dx\\ &=16 x+2 x^2+2 x^3-x^2 \log \left (e^{-x} x\right )-x^3 \log \left (e^{-x} x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 40, normalized size = 1.43 \begin {gather*} 16 x+2 x^2+2 x^3-x^2 \log \left (e^{-x} x\right )-x^3 \log \left (e^{-x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 30, normalized size = 1.07 \begin {gather*} 2 \, x^{3} + 2 \, x^{2} - {\left (x^{3} + x^{2}\right )} \log \left (x e^{\left (-x\right )}\right ) + 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 31, normalized size = 1.11 \begin {gather*} x^{4} - x^{3} \log \relax (x) + 3 \, x^{3} - x^{2} \log \relax (x) + 2 \, x^{2} + 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 39, normalized size = 1.39
method | result | size |
default | \(16 x -\ln \left (x \,{\mathrm e}^{-x}\right ) x^{3}-x^{2} \ln \left (x \,{\mathrm e}^{-x}\right )+2 x^{2}+2 x^{3}\) | \(39\) |
norman | \(16 x -\ln \left (x \,{\mathrm e}^{-x}\right ) x^{3}-x^{2} \ln \left (x \,{\mathrm e}^{-x}\right )+2 x^{2}+2 x^{3}\) | \(39\) |
risch | \(\left (x^{3}+x^{2}\right ) \ln \left ({\mathrm e}^{x}\right )-x^{3} \ln \relax (x )-x^{2} \ln \relax (x )-\frac {i \pi \,x^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}}{2}+\frac {i \pi \,x^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )}{2}+\frac {i \pi \,x^{3} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}}{2}-\frac {i \pi \,x^{3} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )}{2}+2 x^{2}+2 x^{3}+16 x\) | \(232\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 30, normalized size = 1.07 \begin {gather*} 2 \, x^{3} + 2 \, x^{2} - {\left (x^{3} + x^{2}\right )} \log \left (x e^{\left (-x\right )}\right ) + 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.85, size = 31, normalized size = 1.11 \begin {gather*} 16\,x-x^2\,\ln \relax (x)-x^3\,\ln \relax (x)+2\,x^2+3\,x^3+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 27, normalized size = 0.96 \begin {gather*} 2 x^{3} + 2 x^{2} + 16 x + \left (- x^{3} - x^{2}\right ) \log {\left (x e^{- x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________