Optimal. Leaf size=27 \[ 5+\log \left (-e^9 x+\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+e^4+x+\left (1+e^9 \left (-4-e^4-x\right )\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )}{e^9 \left (-4 x-e^4 x-x^2\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )+\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 \left (1+\frac {e^4}{4}\right )-x-\left (1+e^9 \left (-4-e^4-x\right )\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )}{\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx\\ &=\int \left (-\frac {1-e^9 \left (4+e^4\right )}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )}+\frac {e^9 x}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )}+\frac {-4-e^4}{\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )}-\frac {x}{\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )}\right ) \, dx\\ &=e^9 \int \frac {x}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx+\left (-4-e^4\right ) \int \frac {1}{\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx+\left (-1+4 e^9+e^{13}\right ) \int \frac {1}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx-\int \frac {x}{\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx\\ &=e^9 \int \left (\frac {1}{e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )}+\frac {-4-e^4}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )}\right ) \, dx+\left (-4-e^4\right ) \int \frac {1}{\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx+\left (-1+4 e^9+e^{13}\right ) \int \frac {1}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx-\int \left (\frac {1}{\log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )}+\frac {-4-e^4}{\left (4+e^4+x\right ) \log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )}\right ) \, dx\\ &=e^9 \int \frac {1}{e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )} \, dx-\left (e^9 \left (4+e^4\right )\right ) \int \frac {1}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx+\left (-1+4 e^9+e^{13}\right ) \int \frac {1}{\left (4+e^4+x\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx-\int \frac {1}{\log \left (\frac {e^x}{4}\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right ) \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 0.96 \begin {gather*} \log \left (e^9 x-\log \left (\left (4+e^4+x\right ) \log \left (\log \left (\frac {e^x}{4}\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 21, normalized size = 0.78 \begin {gather*} \log \left (-x e^{9} + \log \left ({\left (x + e^{4} + 4\right )} \log \left (x - 2 \, \log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 21, normalized size = 0.78 \begin {gather*} \log \left (-x e^{9} + \log \left (x + e^{4} + 4\right ) + \log \left (\log \left (x - 2 \, \log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 1.76, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-{\mathrm e}^{4}-x -4\right ) {\mathrm e}^{9}+1\right ) \ln \left (\frac {{\mathrm e}^{x}}{4}\right ) \ln \left (\ln \left (\frac {{\mathrm e}^{x}}{4}\right )\right )+x +4+{\mathrm e}^{4}}{\left (x +4+{\mathrm e}^{4}\right ) \ln \left (\frac {{\mathrm e}^{x}}{4}\right ) \ln \left (\ln \left (\frac {{\mathrm e}^{x}}{4}\right )\right ) \ln \left (\left (x +4+{\mathrm e}^{4}\right ) \ln \left (\ln \left (\frac {{\mathrm e}^{x}}{4}\right )\right )\right )+\left (-x \,{\mathrm e}^{4}-x^{2}-4 x \right ) {\mathrm e}^{9} \ln \left (\frac {{\mathrm e}^{x}}{4}\right ) \ln \left (\ln \left (\frac {{\mathrm e}^{x}}{4}\right )\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 21, normalized size = 0.78 \begin {gather*} \log \left (-x e^{9} + \log \left (x + e^{4} + 4\right ) + \log \left (\log \left (x - 2 \, \log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.10, size = 21, normalized size = 0.78 \begin {gather*} \ln \left (\ln \left (\ln \left (x-\ln \relax (4)\right )\,\left (x+{\mathrm {e}}^4+4\right )\right )-x\,{\mathrm {e}}^9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________