Optimal. Leaf size=24 \[ \frac {4 e^{-e^x} \log \left (\frac {7}{2}\right )}{-e^{4 x}+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 40, normalized size of antiderivative = 1.67, number of steps used = 3, number of rules used = 3, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6688, 12, 2288} \begin {gather*} -\frac {4 e^{-x-e^x} \left (e^{5 x}-e^x x\right ) \log \left (\frac {7}{2}\right )}{\left (e^{4 x}-x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{-e^x} \left (-1+4 e^{4 x}+e^{5 x}-e^x x\right ) \log \left (\frac {7}{2}\right )}{\left (e^{4 x}-x\right )^2} \, dx\\ &=\left (4 \log \left (\frac {7}{2}\right )\right ) \int \frac {e^{-e^x} \left (-1+4 e^{4 x}+e^{5 x}-e^x x\right )}{\left (e^{4 x}-x\right )^2} \, dx\\ &=-\frac {4 e^{-e^x-x} \left (e^{5 x}-e^x x\right ) \log \left (\frac {7}{2}\right )}{\left (e^{4 x}-x\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 24, normalized size = 1.00 \begin {gather*} -\frac {4 e^{-e^x} \log \left (\frac {7}{2}\right )}{e^{4 x}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 19, normalized size = 0.79 \begin {gather*} \frac {4 \, e^{\left (-e^{x}\right )} \log \left (\frac {7}{2}\right )}{x - e^{\left (4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 39, normalized size = 1.62 \begin {gather*} \frac {4 \, {\left (e^{\left (4 \, x\right )} \log \relax (7) - e^{\left (4 \, x\right )} \log \relax (2)\right )}}{x e^{\left (4 \, x + e^{x}\right )} - e^{\left (8 \, x + e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (4 \ln \left (\frac {7}{2}\right ) {\mathrm e}^{x}+16 \ln \left (\frac {7}{2}\right )\right ) {\mathrm e}^{4 x}-4 x \ln \left (\frac {7}{2}\right ) {\mathrm e}^{x}-4 \ln \left (\frac {7}{2}\right )\right ) {\mathrm e}^{-{\mathrm e}^{x}}}{{\mathrm e}^{8 x}-2 x \,{\mathrm e}^{4 x}+x^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 24, normalized size = 1.00 \begin {gather*} \frac {4 \, {\left (\log \relax (7) - \log \relax (2)\right )} e^{\left (-e^{x}\right )}}{x - e^{\left (4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 19, normalized size = 0.79 \begin {gather*} \frac {4\,{\mathrm {e}}^{-{\mathrm {e}}^x}\,\ln \left (\frac {7}{2}\right )}{x-{\mathrm {e}}^{4\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 20, normalized size = 0.83 \begin {gather*} \frac {\left (- 4 \log {\relax (2 )} + 4 \log {\relax (7 )}\right ) e^{- e^{x}}}{x - e^{4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________