Optimal. Leaf size=23 \[ x^2+5 \left (1-x+\frac {10 \left (\frac {4}{5}+x\right )}{e^5}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 38, normalized size of antiderivative = 1.65, number of steps used = 2, number of rules used = 1, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {12} \begin {gather*} \frac {500 x^2}{e^{10}}-\frac {(1-10 x)^2}{e^5}+\frac {1}{6} (5-6 x)^2+\frac {800 x}{e^{10}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (800+e^5 (20-200 x)+1000 x+e^{10} (-10+12 x)\right ) \, dx}{e^{10}}\\ &=-\frac {(1-10 x)^2}{e^5}+\frac {1}{6} (5-6 x)^2+\frac {800 x}{e^{10}}+\frac {500 x^2}{e^{10}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 39, normalized size = 1.70 \begin {gather*} 2 \left (-5 x+\frac {400 x}{e^{10}}+\frac {10 x}{e^5}+3 x^2+\frac {250 x^2}{e^{10}}-\frac {50 x^2}{e^5}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 38, normalized size = 1.65 \begin {gather*} 2 \, {\left (250 \, x^{2} + {\left (3 \, x^{2} - 5 \, x\right )} e^{10} - 10 \, {\left (5 \, x^{2} - x\right )} e^{5} + 400 \, x\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 38, normalized size = 1.65 \begin {gather*} 2 \, {\left (250 \, x^{2} + {\left (3 \, x^{2} - 5 \, x\right )} e^{10} - 10 \, {\left (5 \, x^{2} - x\right )} e^{5} + 400 \, x\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.48
method | result | size |
risch | \(6 x^{2}-10 x -100 x^{2} {\mathrm e}^{-5}+20 x \,{\mathrm e}^{-5}+500 x^{2} {\mathrm e}^{-10}+800 \,{\mathrm e}^{-10} x\) | \(34\) |
gosper | \(2 x \left (3 x \,{\mathrm e}^{10}-5 \,{\mathrm e}^{10}-50 x \,{\mathrm e}^{5}+10 \,{\mathrm e}^{5}+250 x +400\right ) {\mathrm e}^{-10}\) | \(35\) |
default | \({\mathrm e}^{-10} \left ({\mathrm e}^{10} \left (6 x^{2}-10 x \right )+{\mathrm e}^{5} \left (-100 x^{2}+20 x \right )+500 x^{2}+800 x \right )\) | \(41\) |
norman | \(\left (-10 \left ({\mathrm e}^{10}-2 \,{\mathrm e}^{5}-80\right ) {\mathrm e}^{-5} x +2 \left (3 \,{\mathrm e}^{10}-50 \,{\mathrm e}^{5}+250\right ) {\mathrm e}^{-5} x^{2}\right ) {\mathrm e}^{-5}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 38, normalized size = 1.65 \begin {gather*} 2 \, {\left (250 \, x^{2} + {\left (3 \, x^{2} - 5 \, x\right )} e^{10} - 10 \, {\left (5 \, x^{2} - x\right )} e^{5} + 400 \, x\right )} e^{\left (-10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 32, normalized size = 1.39 \begin {gather*} \frac {{\mathrm {e}}^{-10}\,\left (12\,{\mathrm {e}}^{10}-200\,{\mathrm {e}}^5+1000\right )\,x^2}{2}+{\mathrm {e}}^{-10}\,\left (20\,{\mathrm {e}}^5-10\,{\mathrm {e}}^{10}+800\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 34, normalized size = 1.48 \begin {gather*} \frac {x^{2} \left (- 100 e^{5} + 500 + 6 e^{10}\right )}{e^{10}} + \frac {x \left (- 10 e^{10} + 800 + 20 e^{5}\right )}{e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________