Optimal. Leaf size=24 \[ \left (-e^{\frac {1}{4} x^3 (4+\log (5))}+\log \left (5+x^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.96, antiderivative size = 72, normalized size of antiderivative = 3.00, number of steps used = 11, number of rules used = 9, integrand size = 131, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {6688, 12, 6725, 2287, 2209, 2475, 2390, 2301, 2288} \begin {gather*} 5^{\frac {x^3}{2}} e^{2 x^3}+\log ^2\left (x^2+5\right )-\frac {2\ 5^{\frac {x^3}{4}} e^{x^3} \left (5 x \log \left (x^2+5\right )+x^3 \log \left (x^2+5\right )\right )}{x \left (x^2+5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rule 2287
Rule 2288
Rule 2301
Rule 2390
Rule 2475
Rule 6688
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (8-3\ 5^{\frac {x^3}{4}} e^{x^3} x \left (5+x^2\right ) (4+\log (5))\right ) \left (-5^{\frac {x^3}{4}} e^{x^3}+\log \left (5+x^2\right )\right )}{2 \left (5+x^2\right )} \, dx\\ &=\frac {1}{2} \int \frac {x \left (8-3\ 5^{\frac {x^3}{4}} e^{x^3} x \left (5+x^2\right ) (4+\log (5))\right ) \left (-5^{\frac {x^3}{4}} e^{x^3}+\log \left (5+x^2\right )\right )}{5+x^2} \, dx\\ &=\frac {1}{2} \int \left (3\ 5^{\frac {x^3}{2}} e^{2 x^3} x^2 (4+\log (5))+\frac {8 x \log \left (5+x^2\right )}{5+x^2}+\frac {5^{\frac {x^3}{4}} e^{x^3} x \left (-8-60 x \left (1+\frac {\log (5)}{4}\right ) \log \left (5+x^2\right )-12 x^3 \left (1+\frac {\log (5)}{4}\right ) \log \left (5+x^2\right )\right )}{5+x^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {5^{\frac {x^3}{4}} e^{x^3} x \left (-8-60 x \left (1+\frac {\log (5)}{4}\right ) \log \left (5+x^2\right )-12 x^3 \left (1+\frac {\log (5)}{4}\right ) \log \left (5+x^2\right )\right )}{5+x^2} \, dx+4 \int \frac {x \log \left (5+x^2\right )}{5+x^2} \, dx+\frac {1}{2} (3 (4+\log (5))) \int 5^{\frac {x^3}{2}} e^{2 x^3} x^2 \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {1}{4} x^3 (4+\log (5))} x \left (-8-60 x \left (1+\frac {\log (5)}{4}\right ) \log \left (5+x^2\right )-12 x^3 \left (1+\frac {\log (5)}{4}\right ) \log \left (5+x^2\right )\right )}{5+x^2} \, dx+2 \operatorname {Subst}\left (\int \frac {\log (5+x)}{5+x} \, dx,x,x^2\right )+\frac {1}{2} (3 (4+\log (5))) \int e^{\frac {1}{2} x^3 (4+\log (5))} x^2 \, dx\\ &=5^{\frac {x^3}{2}} e^{2 x^3}-\frac {2\ 5^{\frac {x^3}{4}} e^{x^3} \left (5 x \log \left (5+x^2\right )+x^3 \log \left (5+x^2\right )\right )}{x \left (5+x^2\right )}+2 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,5+x^2\right )\\ &=5^{\frac {x^3}{2}} e^{2 x^3}+\log ^2\left (5+x^2\right )-\frac {2\ 5^{\frac {x^3}{4}} e^{x^3} \left (5 x \log \left (5+x^2\right )+x^3 \log \left (5+x^2\right )\right )}{x \left (5+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 25, normalized size = 1.04 \begin {gather*} \left (-5^{\frac {x^3}{4}} e^{x^3}+\log \left (5+x^2\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 43, normalized size = 1.79 \begin {gather*} -2 \, e^{\left (\frac {1}{4} \, x^{3} \log \relax (5) + x^{3}\right )} \log \left (x^{2} + 5\right ) + \log \left (x^{2} + 5\right )^{2} + e^{\left (\frac {1}{2} \, x^{3} \log \relax (5) + 2 \, x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.45, size = 45, normalized size = 1.88
method | result | size |
risch | \(5^{\frac {x^{3}}{2}} {\mathrm e}^{2 x^{3}}-2 \,5^{\frac {x^{3}}{4}} {\mathrm e}^{x^{3}} \ln \left (x^{2}+5\right )+\ln \left (x^{2}+5\right )^{2}\) | \(45\) |
default | \(-2 \,{\mathrm e}^{\frac {x^{3} \ln \relax (5)}{4}+x^{3}} \ln \left (x^{2}+5\right )+\ln \left (x^{2}+5\right )^{2}+\frac {4 \,{\mathrm e}^{\frac {x^{3} \ln \relax (5)}{2}+2 x^{3}}}{\ln \relax (5)+4}+\frac {\ln \relax (5) {\mathrm e}^{\frac {x^{3} \ln \relax (5)}{2}+2 x^{3}}}{\ln \relax (5)+4}\) | \(75\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 43, normalized size = 1.79 \begin {gather*} -2 \, e^{\left (\frac {1}{4} \, x^{3} \log \relax (5) + x^{3}\right )} \log \left (x^{2} + 5\right ) + \log \left (x^{2} + 5\right )^{2} + e^{\left (\frac {1}{2} \, x^{3} \log \relax (5) + 2 \, x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (x^2+5\right )\,\left (8\,x-{\mathrm {e}}^{\frac {x^3\,\ln \relax (5)}{4}+x^3}\,\left (\ln \relax (5)\,\left (3\,x^4+15\,x^2\right )+60\,x^2+12\,x^4\right )\right )-8\,x\,{\mathrm {e}}^{\frac {x^3\,\ln \relax (5)}{4}+x^3}+{\mathrm {e}}^{\frac {x^3\,\ln \relax (5)}{2}+2\,x^3}\,\left (\ln \relax (5)\,\left (3\,x^4+15\,x^2\right )+60\,x^2+12\,x^4\right )}{2\,x^2+10} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.83, size = 44, normalized size = 1.83 \begin {gather*} - 2 e^{\frac {x^{3} \log {\relax (5 )}}{4} + x^{3}} \log {\left (x^{2} + 5 \right )} + e^{\frac {x^{3} \log {\relax (5 )}}{2} + 2 x^{3}} + \log {\left (x^{2} + 5 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________