Optimal. Leaf size=27 \[ 3+\frac {-1+x}{x}-\frac {1}{3} e^{3+e^5-x} x+x^3 \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 42, normalized size of antiderivative = 1.56, number of steps used = 7, number of rules used = 5, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {12, 6688, 2176, 2194, 14} \begin {gather*} x^3-\frac {1}{3} e^{-x+e^5+3}+\frac {1}{3} e^{-x+e^5+3} (1-x)-\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{e^5-x} \left (e^3 \left (-x^2+x^3\right )+e^{-e^5+x} \left (3+9 x^4\right )\right )}{x^2} \, dx\\ &=\frac {1}{3} \int \left (e^{3+e^5-x} (-1+x)+\frac {3+9 x^4}{x^2}\right ) \, dx\\ &=\frac {1}{3} \int e^{3+e^5-x} (-1+x) \, dx+\frac {1}{3} \int \frac {3+9 x^4}{x^2} \, dx\\ &=\frac {1}{3} e^{3+e^5-x} (1-x)+\frac {1}{3} \int e^{3+e^5-x} \, dx+\frac {1}{3} \int \left (\frac {3}{x^2}+9 x^2\right ) \, dx\\ &=-\frac {1}{3} e^{3+e^5-x}+\frac {1}{3} e^{3+e^5-x} (1-x)-\frac {1}{x}+x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 28, normalized size = 1.04 \begin {gather*} \frac {1}{3} \left (-\frac {3}{x}-e^{3+e^5-x} x+3 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 25, normalized size = 0.93 \begin {gather*} \frac {3 \, x^{4} - x^{2} e^{\left (-x + e^{5} + 3\right )} - 3}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 25, normalized size = 0.93 \begin {gather*} \frac {3 \, x^{4} - x^{2} e^{\left (-x + e^{5} + 3\right )} - 3}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 21, normalized size = 0.78
method | result | size |
risch | \(x^{3}-\frac {1}{x}-\frac {x \,{\mathrm e}^{3+{\mathrm e}^{5}-x}}{3}\) | \(21\) |
norman | \(\frac {\left ({\mathrm e}^{-{\mathrm e}^{5}+x} x^{4}-\frac {x^{2} {\mathrm e}^{3}}{3}-{\mathrm e}^{-{\mathrm e}^{5}+x}\right ) {\mathrm e}^{{\mathrm e}^{5}-x}}{x}\) | \(42\) |
derivativedivides | \(\frac {{\mathrm e}^{3} \left ({\mathrm e}^{{\mathrm e}^{5}-x} \left (3 \,{\mathrm e}^{5}-x -1\right )+\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{15}}{x}-\left ({\mathrm e}^{15}+3 \,{\mathrm e}^{10}\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}+\frac {{\mathrm e}^{15} {\mathrm e}^{3} \left (-\frac {{\mathrm e}^{{\mathrm e}^{5}-x}}{x}+{\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}-\frac {1}{x}+\left (-{\mathrm e}^{5}+x \right )^{3}+3 \,{\mathrm e}^{5} \left (-{\mathrm e}^{5}+x \right )^{2}+3 \,{\mathrm e}^{10} \left (-{\mathrm e}^{5}+x \right )-36 \,{\mathrm e}^{15} \ln \relax (x )-\frac {36 \,{\mathrm e}^{15} {\mathrm e}^{5}}{x}-\frac {18 \,{\mathrm e}^{20}}{x}+36 \,{\mathrm e}^{5} {\mathrm e}^{10} \ln \relax (x )+\frac {54 \left ({\mathrm e}^{10}\right )^{2}}{x}-\frac {{\mathrm e}^{3} \left (-{\mathrm e}^{{\mathrm e}^{5}-x}-\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{10}}{x}-\left (-{\mathrm e}^{10}-2 \,{\mathrm e}^{5}\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}-\frac {{\mathrm e}^{10} {\mathrm e}^{3} \left (-\frac {{\mathrm e}^{{\mathrm e}^{5}-x}}{x}+{\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}-\frac {2 \,{\mathrm e}^{3} {\mathrm e}^{5} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{5}}{x}-\left ({\mathrm e}^{5}+1\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}+{\mathrm e}^{3} {\mathrm e}^{5} \left (-{\mathrm e}^{{\mathrm e}^{5}-x}-\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{10}}{x}-\left (-{\mathrm e}^{10}-2 \,{\mathrm e}^{5}\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )+{\mathrm e}^{10} {\mathrm e}^{3} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{5}}{x}-\left ({\mathrm e}^{5}+1\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )\) | \(365\) |
default | \(\frac {{\mathrm e}^{3} \left ({\mathrm e}^{{\mathrm e}^{5}-x} \left (3 \,{\mathrm e}^{5}-x -1\right )+\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{15}}{x}-\left ({\mathrm e}^{15}+3 \,{\mathrm e}^{10}\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}+\frac {{\mathrm e}^{15} {\mathrm e}^{3} \left (-\frac {{\mathrm e}^{{\mathrm e}^{5}-x}}{x}+{\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}-\frac {1}{x}+\left (-{\mathrm e}^{5}+x \right )^{3}+3 \,{\mathrm e}^{5} \left (-{\mathrm e}^{5}+x \right )^{2}+3 \,{\mathrm e}^{10} \left (-{\mathrm e}^{5}+x \right )-36 \,{\mathrm e}^{15} \ln \relax (x )-\frac {36 \,{\mathrm e}^{15} {\mathrm e}^{5}}{x}-\frac {18 \,{\mathrm e}^{20}}{x}+36 \,{\mathrm e}^{5} {\mathrm e}^{10} \ln \relax (x )+\frac {54 \left ({\mathrm e}^{10}\right )^{2}}{x}-\frac {{\mathrm e}^{3} \left (-{\mathrm e}^{{\mathrm e}^{5}-x}-\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{10}}{x}-\left (-{\mathrm e}^{10}-2 \,{\mathrm e}^{5}\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}-\frac {{\mathrm e}^{10} {\mathrm e}^{3} \left (-\frac {{\mathrm e}^{{\mathrm e}^{5}-x}}{x}+{\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}-\frac {2 \,{\mathrm e}^{3} {\mathrm e}^{5} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{5}}{x}-\left ({\mathrm e}^{5}+1\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )}{3}+{\mathrm e}^{3} {\mathrm e}^{5} \left (-{\mathrm e}^{{\mathrm e}^{5}-x}-\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{10}}{x}-\left (-{\mathrm e}^{10}-2 \,{\mathrm e}^{5}\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )+{\mathrm e}^{10} {\mathrm e}^{3} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}-x} {\mathrm e}^{5}}{x}-\left ({\mathrm e}^{5}+1\right ) {\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )\right )\) | \(365\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 38, normalized size = 1.41 \begin {gather*} x^{3} - \frac {1}{3} \, {\left (x e^{\left (e^{5} + 3\right )} + e^{\left (e^{5} + 3\right )}\right )} e^{\left (-x\right )} - \frac {1}{x} + \frac {1}{3} \, e^{\left (-x + e^{5} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.43, size = 21, normalized size = 0.78 \begin {gather*} x^3-\frac {1}{x}-\frac {x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3\,{\mathrm {e}}^{{\mathrm {e}}^5}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 0.70 \begin {gather*} x^{3} - \frac {x e^{3} e^{- x + e^{5}}}{3} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________