Optimal. Leaf size=31 \[ \frac {e^{3+\frac {1}{2} (-3-x)+x}}{\left (\frac {e^x}{2 x^2}+2 x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3-x}{2}+2 x} \left (16 x^3-6 x^4\right )+e^{\frac {3-x}{2}+x} \left (-32 x^6+8 x^7\right )}{e^{3 x}+12 e^{2 x} x^3+48 e^x x^6+64 x^9} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {3}{2}+\frac {x}{2}} x^3 \left (4 (-4+x) x^3-e^x (-8+3 x)\right )}{\left (e^x+4 x^3\right )^3} \, dx\\ &=2 \int \frac {e^{\frac {3}{2}+\frac {x}{2}} x^3 \left (4 (-4+x) x^3-e^x (-8+3 x)\right )}{\left (e^x+4 x^3\right )^3} \, dx\\ &=2 \int \left (\frac {16 e^{\frac {3}{2}+\frac {x}{2}} (-3+x) x^6}{\left (e^x+4 x^3\right )^3}-\frac {e^{\frac {3}{2}+\frac {x}{2}} x^3 (-8+3 x)}{\left (e^x+4 x^3\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {3}{2}+\frac {x}{2}} x^3 (-8+3 x)}{\left (e^x+4 x^3\right )^2} \, dx\right )+32 \int \frac {e^{\frac {3}{2}+\frac {x}{2}} (-3+x) x^6}{\left (e^x+4 x^3\right )^3} \, dx\\ &=-\left (2 \int \left (-\frac {8 e^{\frac {3}{2}+\frac {x}{2}} x^3}{\left (e^x+4 x^3\right )^2}+\frac {3 e^{\frac {3}{2}+\frac {x}{2}} x^4}{\left (e^x+4 x^3\right )^2}\right ) \, dx\right )+32 \int \left (-\frac {3 e^{\frac {3}{2}+\frac {x}{2}} x^6}{\left (e^x+4 x^3\right )^3}+\frac {e^{\frac {3}{2}+\frac {x}{2}} x^7}{\left (e^x+4 x^3\right )^3}\right ) \, dx\\ &=-\left (6 \int \frac {e^{\frac {3}{2}+\frac {x}{2}} x^4}{\left (e^x+4 x^3\right )^2} \, dx\right )+16 \int \frac {e^{\frac {3}{2}+\frac {x}{2}} x^3}{\left (e^x+4 x^3\right )^2} \, dx+32 \int \frac {e^{\frac {3}{2}+\frac {x}{2}} x^7}{\left (e^x+4 x^3\right )^3} \, dx-96 \int \frac {e^{\frac {3}{2}+\frac {x}{2}} x^6}{\left (e^x+4 x^3\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 27, normalized size = 0.87 \begin {gather*} \frac {4 e^{\frac {3}{2}+\frac {x}{2}} x^4}{\left (e^x+4 x^3\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 36, normalized size = 1.16 \begin {gather*} \frac {4 \, x^{4} e^{\left (\frac {1}{2} \, x + \frac {15}{2}\right )}}{16 \, x^{6} e^{6} + 8 \, x^{3} e^{\left (x + 6\right )} + e^{\left (2 \, x + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 30, normalized size = 0.97 \begin {gather*} \frac {8 \, x^{4} e^{\left (\frac {1}{2} \, x + \frac {3}{2}\right )}}{16 \, x^{6} + 8 \, x^{3} e^{x} + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.71
method | result | size |
risch | \(\frac {4 x^{4} {\mathrm e}^{\frac {3}{2}+\frac {x}{2}}}{\left (4 x^{3}+{\mathrm e}^{x}\right )^{2}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 30, normalized size = 0.97 \begin {gather*} \frac {4 \, x^{4} e^{\left (\frac {1}{2} \, x + \frac {3}{2}\right )}}{16 \, x^{6} + 8 \, x^{3} e^{x} + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.47, size = 30, normalized size = 0.97 \begin {gather*} \frac {4\,x^4\,{\mathrm {e}}^{x/2}\,{\mathrm {e}}^{3/2}}{{\mathrm {e}}^{2\,x}+8\,x^3\,{\mathrm {e}}^x+16\,x^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 34, normalized size = 1.10 \begin {gather*} \frac {4 x^{4} e^{\frac {3}{2}} \sqrt {e^{x}}}{16 x^{6} + 8 x^{3} e^{x} + e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________