Optimal. Leaf size=21 \[ e^5 \log \left (\frac {e^{\frac {2}{1+x^2}}}{\log ^2(x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1594, 28, 6688, 261, 2302, 29} \begin {gather*} \frac {2 e^5}{x^2+1}-2 e^5 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 29
Rule 261
Rule 1594
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5 \left (-2-4 x^2-2 x^4\right )-4 e^5 x^2 \log (x)}{x \left (1+2 x^2+x^4\right ) \log (x)} \, dx\\ &=\int \frac {e^5 \left (-2-4 x^2-2 x^4\right )-4 e^5 x^2 \log (x)}{x \left (1+x^2\right )^2 \log (x)} \, dx\\ &=\int \left (-\frac {4 e^5 x}{\left (1+x^2\right )^2}-\frac {2 e^5}{x \log (x)}\right ) \, dx\\ &=-\left (\left (2 e^5\right ) \int \frac {1}{x \log (x)} \, dx\right )-\left (4 e^5\right ) \int \frac {x}{\left (1+x^2\right )^2} \, dx\\ &=\frac {2 e^5}{1+x^2}-\left (2 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=\frac {2 e^5}{1+x^2}-2 e^5 \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.00 \begin {gather*} \frac {2 e^5}{1+x^2}-2 e^5 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 25, normalized size = 1.19 \begin {gather*} -\frac {2 \, {\left ({\left (x^{2} + 1\right )} e^{5} \log \left (\log \relax (x)\right ) - e^{5}\right )}}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 29, normalized size = 1.38 \begin {gather*} -\frac {2 \, {\left (x^{2} e^{5} \log \left (\log \relax (x)\right ) + e^{5} \log \left (\log \relax (x)\right ) - e^{5}\right )}}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 20, normalized size = 0.95
method | result | size |
default | \(-2 \,{\mathrm e}^{5} \ln \left (\ln \relax (x )\right )+\frac {2 \,{\mathrm e}^{5}}{x^{2}+1}\) | \(20\) |
norman | \(-2 \,{\mathrm e}^{5} \ln \left (\ln \relax (x )\right )+\frac {2 \,{\mathrm e}^{5}}{x^{2}+1}\) | \(20\) |
risch | \(-2 \,{\mathrm e}^{5} \ln \left (\ln \relax (x )\right )+\frac {2 \,{\mathrm e}^{5}}{x^{2}+1}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 19, normalized size = 0.90 \begin {gather*} -2 \, e^{5} \log \left (\log \relax (x)\right ) + \frac {2 \, e^{5}}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.14, size = 19, normalized size = 0.90 \begin {gather*} \frac {2\,{\mathrm {e}}^5}{x^2+1}-2\,\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.95 \begin {gather*} - 2 e^{5} \log {\left (\log {\relax (x )} \right )} + \frac {4 e^{5}}{2 x^{2} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________