Optimal. Leaf size=27 \[ \frac {x}{5+\frac {1}{e^2}+\frac {4}{e x}+\log (4)-\log \left (3 e^2\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 59, normalized size of antiderivative = 2.19, number of steps used = 11, number of rules used = 5, integrand size = 192, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6, 1984, 27, 12, 683} \begin {gather*} \frac {e^2 x}{1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )}+\frac {16 e^4}{\left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )^2 \left (x \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )+4 e\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 27
Rule 683
Rule 1984
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (8 e x+5 e^2 x^2\right )+x^2 \left (e^4+e^6 \log (4)\right )-e^6 x^2 \log \left (3 e^2\right )}{e^2 x^2+e^2 \left (8 e x+10 e^2 x^2\right )+e^4 \left (16+40 e x+25 e^2 x^2\right )+\left (2 e^4 x^2+e^4 \left (8 e x+10 e^2 x^2\right )\right ) \log (4)+e^6 x^2 \log ^2(4)+\left (-2 e^4 x^2+e^4 \left (-8 e x-10 e^2 x^2\right )-2 e^6 x^2 \log (4)\right ) \log \left (3 e^2\right )+e^6 x^2 \log ^2\left (3 e^2\right )} \, dx\\ &=\int \frac {e^4 \left (8 e x+5 e^2 x^2\right )+x^2 \left (e^4+e^6 \log (4)-e^6 \log \left (3 e^2\right )\right )}{e^2 x^2+e^2 \left (8 e x+10 e^2 x^2\right )+e^4 \left (16+40 e x+25 e^2 x^2\right )+\left (2 e^4 x^2+e^4 \left (8 e x+10 e^2 x^2\right )\right ) \log (4)+e^6 x^2 \log ^2(4)+\left (-2 e^4 x^2+e^4 \left (-8 e x-10 e^2 x^2\right )-2 e^6 x^2 \log (4)\right ) \log \left (3 e^2\right )+e^6 x^2 \log ^2\left (3 e^2\right )} \, dx\\ &=\int \frac {e^4 \left (8 e x+5 e^2 x^2\right )+x^2 \left (e^4+e^6 \log (4)-e^6 \log \left (3 e^2\right )\right )}{e^2 \left (8 e x+10 e^2 x^2\right )+e^4 \left (16+40 e x+25 e^2 x^2\right )+\left (2 e^4 x^2+e^4 \left (8 e x+10 e^2 x^2\right )\right ) \log (4)+x^2 \left (e^2+e^6 \log ^2(4)\right )+\left (-2 e^4 x^2+e^4 \left (-8 e x-10 e^2 x^2\right )-2 e^6 x^2 \log (4)\right ) \log \left (3 e^2\right )+e^6 x^2 \log ^2\left (3 e^2\right )} \, dx\\ &=\int \frac {e^4 \left (8 e x+5 e^2 x^2\right )+x^2 \left (e^4+e^6 \log (4)-e^6 \log \left (3 e^2\right )\right )}{e^2 \left (8 e x+10 e^2 x^2\right )+e^4 \left (16+40 e x+25 e^2 x^2\right )+\left (2 e^4 x^2+e^4 \left (8 e x+10 e^2 x^2\right )\right ) \log (4)+\left (-2 e^4 x^2+e^4 \left (-8 e x-10 e^2 x^2\right )-2 e^6 x^2 \log (4)\right ) \log \left (3 e^2\right )+x^2 \left (e^2+e^6 \log ^2(4)+e^6 \log ^2\left (3 e^2\right )\right )} \, dx\\ &=\int \frac {8 e^5 x+e^4 x^2 \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )}{16 e^4+8 e^3 x \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )+e^2 x^2 \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )^2} \, dx\\ &=\int \frac {8 e^5 x+e^4 x^2 \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )}{e^2 \left (4 e+x+3 e^2 x+e^2 x \log \left (\frac {4}{3}\right )\right )^2} \, dx\\ &=\int \frac {8 e^5 x+e^4 x^2 \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )}{e^2 \left (4 e+\left (1+3 e^2\right ) x+e^2 x \log \left (\frac {4}{3}\right )\right )^2} \, dx\\ &=\int \frac {8 e^5 x+e^4 x^2 \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )}{e^2 \left (4 e+x \left (1+3 e^2+e^2 \log \left (\frac {4}{3}\right )\right )\right )^2} \, dx\\ &=\frac {\int \frac {8 e^5 x+e^4 x^2 \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )}{\left (4 e+x \left (1+3 e^2+e^2 \log \left (\frac {4}{3}\right )\right )\right )^2} \, dx}{e^2}\\ &=\frac {\int \left (\frac {e^4}{1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )}+\frac {16 e^6}{\left (-1-e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right ) \left (4 e+x \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )\right )^2}\right ) \, dx}{e^2}\\ &=\frac {e^2 x}{1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )}+\frac {16 e^4}{\left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )^2 \left (4 e+x \left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 88, normalized size = 3.26 \begin {gather*} \frac {e^2 \left (8 e x+x^2+8 e^3 x \left (3+\log \left (\frac {4}{3}\right )\right )+e^4 x^2 \left (3+\log \left (\frac {4}{3}\right )\right )^2+2 e^2 \left (16+x^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )\right )}{\left (1+e^2 \left (3+\log \left (\frac {4}{3}\right )\right )\right )^2 \left (4 e+x+e^2 x \left (3+\log \left (\frac {4}{3}\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.52, size = 295, normalized size = 10.93 \begin {gather*} -\frac {x^{2} e^{6} \log \relax (3)^{2} + 4 \, x^{2} e^{6} \log \relax (2)^{2} + 9 \, x^{2} e^{6} + x^{2} e^{2} + 12 \, x e^{5} + 2 \, {\left (3 \, x^{2} + 8\right )} e^{4} + 4 \, x e^{3} - 2 \, {\left (2 \, x^{2} e^{6} \log \relax (2) + 3 \, x^{2} e^{6} + x^{2} e^{4} + 2 \, x e^{5}\right )} \log \relax (3) + 4 \, {\left (3 \, x^{2} e^{6} + x^{2} e^{4} + 2 \, x e^{5}\right )} \log \relax (2)}{x e^{6} \log \relax (3)^{3} - 8 \, x e^{6} \log \relax (2)^{3} - {\left (6 \, x e^{6} \log \relax (2) + 9 \, x e^{6} + 3 \, x e^{4} + 4 \, e^{5}\right )} \log \relax (3)^{2} - 4 \, {\left (9 \, x e^{6} + 3 \, x e^{4} + 4 \, e^{5}\right )} \log \relax (2)^{2} - 27 \, x e^{6} - 27 \, x e^{4} - 9 \, x e^{2} + {\left (12 \, x e^{6} \log \relax (2)^{2} + 27 \, x e^{6} + 18 \, x e^{4} + 3 \, x e^{2} + 4 \, {\left (9 \, x e^{6} + 3 \, x e^{4} + 4 \, e^{5}\right )} \log \relax (2) + 24 \, e^{5} + 8 \, e^{3}\right )} \log \relax (3) - 2 \, {\left (27 \, x e^{6} + 18 \, x e^{4} + 3 \, x e^{2} + 24 \, e^{5} + 8 \, e^{3}\right )} \log \relax (2) - x - 36 \, e^{5} - 24 \, e^{3} - 4 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 45, normalized size = 1.67
method | result | size |
norman | \(\frac {x^{2} {\mathrm e} \,{\mathrm e}^{2}}{2 \,{\mathrm e}^{2} {\mathrm e} \ln \relax (2) x -{\mathrm e}^{2} {\mathrm e} \ln \relax (3) x +3 x \,{\mathrm e} \,{\mathrm e}^{2}+x \,{\mathrm e}+4 \,{\mathrm e}^{2}}\) | \(45\) |
gosper | \(\frac {x^{2} {\mathrm e}^{3}}{2 \,{\mathrm e}^{2} {\mathrm e} \ln \relax (2) x -{\mathrm e}^{2} {\mathrm e} \ln \left (3 \,{\mathrm e}^{2}\right ) x +5 x \,{\mathrm e} \,{\mathrm e}^{2}+x \,{\mathrm e}+4 \,{\mathrm e}^{2}}\) | \(46\) |
risch | \(\frac {x \,{\mathrm e}^{2}}{2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \relax (3)+3 \,{\mathrm e}^{2}+1}+\frac {8 \,{\mathrm e}^{4}}{\left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \relax (3)+3 \,{\mathrm e}^{2}+1\right )^{2} \left (x \,{\mathrm e}^{2} \ln \relax (2)-\frac {x \,{\mathrm e}^{2} \ln \relax (3)}{2}+\frac {3 \,{\mathrm e}^{2} x}{2}+2 \,{\mathrm e}+\frac {x}{2}\right )}\) | \(78\) |
meijerg | \(\frac {4 \left (2 \ln \relax (2) {\mathrm e}^{6}-\ln \left (3 \,{\mathrm e}^{2}\right ) {\mathrm e}^{6}+5 \,{\mathrm e}^{6}+{\mathrm e}^{4}\right ) {\mathrm e} \left (\frac {x \,{\mathrm e}^{-1} \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right ) \left (\frac {3 x \,{\mathrm e}^{-1} \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right )}{4}+6\right )}{12+3 x \,{\mathrm e}^{-1} \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right )}-2 \ln \left (1+\frac {x \,{\mathrm e}^{-1} \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right )}{4}\right )\right )}{\left (4 \ln \relax (2)^{2} {\mathrm e}^{6}-4 \ln \relax (2) \ln \left (3 \,{\mathrm e}^{2}\right ) {\mathrm e}^{6}+\ln \left (3 \,{\mathrm e}^{2}\right )^{2} {\mathrm e}^{6}+4 \,{\mathrm e}^{4} \ln \relax (2)-2 \,{\mathrm e}^{4} \ln \left (3 \,{\mathrm e}^{2}\right )+20 \ln \relax (2) {\mathrm e}^{6}-10 \ln \left (3 \,{\mathrm e}^{2}\right ) {\mathrm e}^{6}+{\mathrm e}^{2}+10 \,{\mathrm e}^{4}+25 \,{\mathrm e}^{6}\right ) \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right )}+\frac {8 \,{\mathrm e}^{5} \left (-\frac {x \,{\mathrm e}^{-1} \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right )}{4 \left (1+\frac {x \,{\mathrm e}^{-1} \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right )}{4}\right )}+\ln \left (1+\frac {x \,{\mathrm e}^{-1} \left (2 \,{\mathrm e}^{2} \ln \relax (2)-{\mathrm e}^{2} \ln \left (3 \,{\mathrm e}^{2}\right )+5 \,{\mathrm e}^{2}+1\right )}{4}\right )\right )}{4 \ln \relax (2)^{2} {\mathrm e}^{6}-4 \ln \relax (2) \ln \left (3 \,{\mathrm e}^{2}\right ) {\mathrm e}^{6}+\ln \left (3 \,{\mathrm e}^{2}\right )^{2} {\mathrm e}^{6}+4 \,{\mathrm e}^{4} \ln \relax (2)-2 \,{\mathrm e}^{4} \ln \left (3 \,{\mathrm e}^{2}\right )+20 \ln \relax (2) {\mathrm e}^{6}-10 \ln \left (3 \,{\mathrm e}^{2}\right ) {\mathrm e}^{6}+{\mathrm e}^{2}+10 \,{\mathrm e}^{4}+25 \,{\mathrm e}^{6}}\) | \(401\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 219, normalized size = 8.11 \begin {gather*} \frac {x e^{2}}{2 \, e^{2} \log \relax (2) - e^{2} \log \left (3 \, e^{2}\right ) + 5 \, e^{2} + 1} + \frac {16 \, e^{4}}{16 \, e^{5} \log \relax (2)^{2} + 4 \, e^{5} \log \left (3 \, e^{2}\right )^{2} + {\left (8 \, e^{6} \log \relax (2)^{3} - e^{6} \log \left (3 \, e^{2}\right )^{3} + 12 \, {\left (5 \, e^{6} + e^{4}\right )} \log \relax (2)^{2} + 3 \, {\left (2 \, e^{6} \log \relax (2) + 5 \, e^{6} + e^{4}\right )} \log \left (3 \, e^{2}\right )^{2} + 6 \, {\left (25 \, e^{6} + 10 \, e^{4} + e^{2}\right )} \log \relax (2) - 3 \, {\left (4 \, e^{6} \log \relax (2)^{2} + 4 \, {\left (5 \, e^{6} + e^{4}\right )} \log \relax (2) + 25 \, e^{6} + 10 \, e^{4} + e^{2}\right )} \log \left (3 \, e^{2}\right ) + 125 \, e^{6} + 75 \, e^{4} + 15 \, e^{2} + 1\right )} x + 16 \, {\left (5 \, e^{5} + e^{3}\right )} \log \relax (2) - 8 \, {\left (2 \, e^{5} \log \relax (2) + 5 \, e^{5} + e^{3}\right )} \log \left (3 \, e^{2}\right ) + 100 \, e^{5} + 40 \, e^{3} + 4 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 148.24, size = 1870, normalized size = 69.26 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.88, size = 292, normalized size = 10.81 \begin {gather*} \frac {x e^{2}}{- e^{2} \log {\relax (3 )} + 1 + 2 e^{2} \log {\relax (2 )} + 3 e^{2}} + \frac {16 e^{4}}{x \left (- 27 e^{6} \log {\relax (3 )} - 36 e^{6} \log {\relax (2 )} \log {\relax (3 )} - 12 e^{6} \log {\relax (2 )}^{2} \log {\relax (3 )} - 18 e^{4} \log {\relax (3 )} - e^{6} \log {\relax (3 )}^{3} - 12 e^{4} \log {\relax (2 )} \log {\relax (3 )} - 3 e^{2} \log {\relax (3 )} + 1 + 6 e^{2} \log {\relax (2 )} + 9 e^{2} + 3 e^{4} \log {\relax (3 )}^{2} + 12 e^{4} \log {\relax (2 )}^{2} + 8 e^{6} \log {\relax (2 )}^{3} + 36 e^{4} \log {\relax (2 )} + 27 e^{4} + 6 e^{6} \log {\relax (2 )} \log {\relax (3 )}^{2} + 9 e^{6} \log {\relax (3 )}^{2} + 36 e^{6} \log {\relax (2 )}^{2} + 27 e^{6} + 54 e^{6} \log {\relax (2 )}\right ) - 24 e^{5} \log {\relax (3 )} - 16 e^{5} \log {\relax (2 )} \log {\relax (3 )} - 8 e^{3} \log {\relax (3 )} + 4 e + 16 e^{3} \log {\relax (2 )} + 24 e^{3} + 4 e^{5} \log {\relax (3 )}^{2} + 16 e^{5} \log {\relax (2 )}^{2} + 48 e^{5} \log {\relax (2 )} + 36 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________