Optimal. Leaf size=30 \[ \frac {1}{2+x^2 \left (1+\frac {(-20+x)^2}{4-x}+x+\log \left (5 x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3264 x+864 x^2-76 x^3+\left (-32 x+16 x^2-2 x^3\right ) \log \left (5 x^2\right )}{64-32 x+6468 x^2-2208 x^3+163364 x^4-29896 x^5+1369 x^6+\left (64 x^2-32 x^3+3236 x^4-1104 x^5+74 x^6\right ) \log \left (5 x^2\right )+\left (16 x^4-8 x^5+x^6\right ) \log ^2\left (5 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (-1632+432 x-38 x^2-(-4+x)^2 \log \left (5 x^2\right )\right )}{\left (8-2 x+404 x^2-37 x^3-(-4+x) x^2 \log \left (5 x^2\right )\right )^2} \, dx\\ &=2 \int \frac {x \left (-1632+432 x-38 x^2-(-4+x)^2 \log \left (5 x^2\right )\right )}{\left (8-2 x+404 x^2-37 x^3-(-4+x) x^2 \log \left (5 x^2\right )\right )^2} \, dx\\ &=2 \int \left (\frac {32-16 x-14 x^2-120 x^3-x^4}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2}+\frac {4-x}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )}\right ) \, dx\\ &=2 \int \frac {32-16 x-14 x^2-120 x^3-x^4}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2} \, dx+2 \int \frac {4-x}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )} \, dx\\ &=2 \int \left (-\frac {16}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2}+\frac {32}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2}-\frac {14 x}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2}-\frac {120 x^2}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2}-\frac {x^3}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2}\right ) \, dx+2 \int \left (-\frac {1}{-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )}+\frac {4}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {x^3}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2} \, dx\right )-2 \int \frac {1}{-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )} \, dx+8 \int \frac {1}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )} \, dx-28 \int \frac {x}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2} \, dx-32 \int \frac {1}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2} \, dx+64 \int \frac {1}{x \left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2} \, dx-240 \int \frac {x^2}{\left (-8+2 x-404 x^2+37 x^3-4 x^2 \log \left (5 x^2\right )+x^3 \log \left (5 x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.93, size = 34, normalized size = 1.13 \begin {gather*} \frac {-4+x}{-8+2 x-404 x^2+37 x^3+(-4+x) x^2 \log \left (5 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 37, normalized size = 1.23 \begin {gather*} \frac {x - 4}{37 \, x^{3} - 404 \, x^{2} + {\left (x^{3} - 4 \, x^{2}\right )} \log \left (5 \, x^{2}\right ) + 2 \, x - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 42, normalized size = 1.40 \begin {gather*} \frac {x - 4}{x^{3} \log \left (5 \, x^{2}\right ) + 37 \, x^{3} - 4 \, x^{2} \log \left (5 \, x^{2}\right ) - 404 \, x^{2} + 2 \, x - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 43, normalized size = 1.43
method | result | size |
risch | \(\frac {x -4}{x^{3} \ln \left (5 x^{2}\right )-4 \ln \left (5 x^{2}\right ) x^{2}+37 x^{3}-404 x^{2}+2 x -8}\) | \(43\) |
norman | \(\frac {202 x^{2}-\frac {37 x^{3}}{2}+2 \ln \left (5 x^{2}\right ) x^{2}-\frac {x^{3} \ln \left (5 x^{2}\right )}{2}}{x^{3} \ln \left (5 x^{2}\right )-4 \ln \left (5 x^{2}\right ) x^{2}+37 x^{3}-404 x^{2}+2 x -8}\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 41, normalized size = 1.37 \begin {gather*} \frac {x - 4}{x^{3} {\left (\log \relax (5) + 37\right )} - 4 \, x^{2} {\left (\log \relax (5) + 101\right )} + 2 \, {\left (x^{3} - 4 \, x^{2}\right )} \log \relax (x) + 2 \, x - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {3264\,x+\ln \left (5\,x^2\right )\,\left (2\,x^3-16\,x^2+32\,x\right )-864\,x^2+76\,x^3}{{\ln \left (5\,x^2\right )}^2\,\left (x^6-8\,x^5+16\,x^4\right )-32\,x+\ln \left (5\,x^2\right )\,\left (74\,x^6-1104\,x^5+3236\,x^4-32\,x^3+64\,x^2\right )+6468\,x^2-2208\,x^3+163364\,x^4-29896\,x^5+1369\,x^6+64} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 32, normalized size = 1.07 \begin {gather*} \frac {x - 4}{37 x^{3} - 404 x^{2} + 2 x + \left (x^{3} - 4 x^{2}\right ) \log {\left (5 x^{2} \right )} - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________