Optimal. Leaf size=19 \[ 5+\frac {x^2 (x-\log (4))}{5 \log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 25, normalized size of antiderivative = 1.32, number of steps used = 17, number of rules used = 6, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {12, 6742, 2353, 2306, 2309, 2178} \begin {gather*} \frac {x^3}{5 \log (x)}-\frac {x^2 \log (4)}{5 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-x^2+x \log (4)+\left (3 x^2-2 x \log (4)\right ) \log (x)}{\log ^2(x)} \, dx\\ &=\frac {1}{5} \int \left (-\frac {x (x-\log (4))}{\log ^2(x)}+\frac {x (3 x-2 \log (4))}{\log (x)}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {x (x-\log (4))}{\log ^2(x)} \, dx\right )+\frac {1}{5} \int \frac {x (3 x-2 \log (4))}{\log (x)} \, dx\\ &=-\left (\frac {1}{5} \int \left (\frac {x^2}{\log ^2(x)}-\frac {x \log (4)}{\log ^2(x)}\right ) \, dx\right )+\frac {1}{5} \int \left (\frac {3 x^2}{\log (x)}-\frac {2 x \log (4)}{\log (x)}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {x^2}{\log ^2(x)} \, dx\right )+\frac {3}{5} \int \frac {x^2}{\log (x)} \, dx+\frac {1}{5} \log (4) \int \frac {x}{\log ^2(x)} \, dx-\frac {1}{5} (2 \log (4)) \int \frac {x}{\log (x)} \, dx\\ &=\frac {x^3}{5 \log (x)}-\frac {x^2 \log (4)}{5 \log (x)}-\frac {3}{5} \int \frac {x^2}{\log (x)} \, dx+\frac {3}{5} \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+\frac {1}{5} (2 \log (4)) \int \frac {x}{\log (x)} \, dx-\frac {1}{5} (2 \log (4)) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {3}{5} \text {Ei}(3 \log (x))-\frac {2}{5} \text {Ei}(2 \log (x)) \log (4)+\frac {x^3}{5 \log (x)}-\frac {x^2 \log (4)}{5 \log (x)}-\frac {3}{5} \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+\frac {1}{5} (2 \log (4)) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {x^3}{5 \log (x)}-\frac {x^2 \log (4)}{5 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 18, normalized size = 0.95 \begin {gather*} \frac {x \left (x^2-x \log (4)\right )}{5 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 17, normalized size = 0.89 \begin {gather*} \frac {x^{3} - 2 \, x^{2} \log \relax (2)}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 21, normalized size = 1.11 \begin {gather*} \frac {x^{3}}{5 \, \log \relax (x)} - \frac {2 \, x^{2} \log \relax (2)}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.95
method | result | size |
risch | \(-\frac {x^{2} \left (2 \ln \relax (2)-x \right )}{5 \ln \relax (x )}\) | \(18\) |
norman | \(\frac {\frac {x^{3}}{5}-\frac {2 x^{2} \ln \relax (2)}{5}}{\ln \relax (x )}\) | \(19\) |
default | \(\frac {4 \ln \relax (2) \expIntegralEi \left (1, -2 \ln \relax (x )\right )}{5}+\frac {2 \ln \relax (2) \left (-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )}{5}+\frac {x^{3}}{5 \ln \relax (x )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 35, normalized size = 1.84 \begin {gather*} -\frac {4}{5} \, {\rm Ei}\left (2 \, \log \relax (x)\right ) \log \relax (2) + \frac {4}{5} \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) \log \relax (2) + \frac {3}{5} \, {\rm Ei}\left (3 \, \log \relax (x)\right ) - \frac {3}{5} \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 21, normalized size = 1.11 \begin {gather*} -\frac {x^3\,\ln \relax (4)-x^4}{5\,x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.79 \begin {gather*} \frac {x^{3} - 2 x^{2} \log {\relax (2 )}}{5 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________