3.76.34 \(\int \frac {-2-\log ^2(3)}{2 x-x^2+x \log ^2(3)} \, dx\)

Optimal. Leaf size=14 \[ \log \left (1-\frac {2+\log ^2(3)}{x}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 1.07, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {6, 12, 615} \begin {gather*} \log \left (-x+2+\log ^2(3)\right )-\log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-2 - Log[3]^2)/(2*x - x^2 + x*Log[3]^2),x]

[Out]

-Log[x] + Log[2 - x + Log[3]^2]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 615

Int[((b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[Log[x]/b, x] - Simp[Log[RemoveContent[b + c*x, x]]/b,
x] /; FreeQ[{b, c}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2-\log ^2(3)}{-x^2+x \left (2+\log ^2(3)\right )} \, dx\\ &=\left (-2-\log ^2(3)\right ) \int \frac {1}{-x^2+x \left (2+\log ^2(3)\right )} \, dx\\ &=-\log (x)+\log \left (2-x+\log ^2(3)\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 15, normalized size = 1.07 \begin {gather*} -\log (x)+\log \left (2-x+\log ^2(3)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-2 - Log[3]^2)/(2*x - x^2 + x*Log[3]^2),x]

[Out]

-Log[x] + Log[2 - x + Log[3]^2]

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 15, normalized size = 1.07 \begin {gather*} \log \left (-\log \relax (3)^{2} + x - 2\right ) - \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(3)^2-2)/(x*log(3)^2-x^2+2*x),x, algorithm="fricas")

[Out]

log(-log(3)^2 + x - 2) - log(x)

________________________________________________________________________________________

giac [B]  time = 0.19, size = 41, normalized size = 2.93 \begin {gather*} {\left (\log \relax (3)^{2} + 2\right )} {\left (\frac {\log \left ({\left | -\log \relax (3)^{2} + x - 2 \right |}\right )}{\log \relax (3)^{2} + 2} - \frac {\log \left ({\left | x \right |}\right )}{\log \relax (3)^{2} + 2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(3)^2-2)/(x*log(3)^2-x^2+2*x),x, algorithm="giac")

[Out]

(log(3)^2 + 2)*(log(abs(-log(3)^2 + x - 2))/(log(3)^2 + 2) - log(abs(x))/(log(3)^2 + 2))

________________________________________________________________________________________

maple [A]  time = 0.24, size = 16, normalized size = 1.14




method result size



norman \(-\ln \relax (x )+\ln \left (\ln \relax (3)^{2}-x +2\right )\) \(16\)
default \(\left (-\ln \relax (3)^{2}-2\right ) \left (\frac {\ln \relax (x )}{2+\ln \relax (3)^{2}}-\frac {\ln \left (-\ln \relax (3)^{2}+x -2\right )}{2+\ln \relax (3)^{2}}\right )\) \(42\)
risch \(-\frac {\ln \relax (x ) \ln \relax (3)^{2}}{2+\ln \relax (3)^{2}}-\frac {2 \ln \relax (x )}{2+\ln \relax (3)^{2}}+\frac {\ln \left (-\ln \relax (3)^{2}+x -2\right ) \ln \relax (3)^{2}}{2+\ln \relax (3)^{2}}+\frac {2 \ln \left (-\ln \relax (3)^{2}+x -2\right )}{2+\ln \relax (3)^{2}}\) \(73\)
meijerg \(\frac {\ln \relax (3)^{2} \left (-\ln \relax (3)^{2}-2\right ) \left (\ln \relax (x )-\ln \left (2+\ln \relax (3)^{2}\right )+i \pi -\ln \left (1-\frac {x}{2+\ln \relax (3)^{2}}\right )\right )}{\left (2+\ln \relax (3)^{2}\right )^{2}}+\frac {2 \left (-\ln \relax (3)^{2}-2\right ) \left (\ln \relax (x )-\ln \left (2+\ln \relax (3)^{2}\right )+i \pi -\ln \left (1-\frac {x}{2+\ln \relax (3)^{2}}\right )\right )}{\left (2+\ln \relax (3)^{2}\right )^{2}}\) \(105\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-ln(3)^2-2)/(x*ln(3)^2-x^2+2*x),x,method=_RETURNVERBOSE)

[Out]

-ln(x)+ln(ln(3)^2-x+2)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 39, normalized size = 2.79 \begin {gather*} {\left (\log \relax (3)^{2} + 2\right )} {\left (\frac {\log \left (-\log \relax (3)^{2} + x - 2\right )}{\log \relax (3)^{2} + 2} - \frac {\log \relax (x)}{\log \relax (3)^{2} + 2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-log(3)^2-2)/(x*log(3)^2-x^2+2*x),x, algorithm="maxima")

[Out]

(log(3)^2 + 2)*(log(-log(3)^2 + x - 2)/(log(3)^2 + 2) - log(x)/(log(3)^2 + 2))

________________________________________________________________________________________

mupad [B]  time = 0.30, size = 18, normalized size = 1.29 \begin {gather*} -2\,\mathrm {atanh}\left (\frac {4\,x}{2\,{\ln \relax (3)}^2+4}-1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(3)^2 + 2)/(2*x + x*log(3)^2 - x^2),x)

[Out]

-2*atanh((4*x)/(2*log(3)^2 + 4) - 1)

________________________________________________________________________________________

sympy [B]  time = 0.27, size = 114, normalized size = 8.14 \begin {gather*} \left (\frac {\log {\left (x - 1 - \frac {2 \log {\relax (3 )}^{2}}{\log {\relax (3 )}^{2} + 2} - \frac {2}{\log {\relax (3 )}^{2} + 2} - \frac {\log {\relax (3 )}^{2}}{2} - \frac {\log {\relax (3 )}^{4}}{2 \left (\log {\relax (3 )}^{2} + 2\right )} \right )}}{\log {\relax (3 )}^{2} + 2} - \frac {\log {\left (x - 1 - \frac {\log {\relax (3 )}^{2}}{2} + \frac {\log {\relax (3 )}^{4}}{2 \left (\log {\relax (3 )}^{2} + 2\right )} + \frac {2}{\log {\relax (3 )}^{2} + 2} + \frac {2 \log {\relax (3 )}^{2}}{\log {\relax (3 )}^{2} + 2} \right )}}{\log {\relax (3 )}^{2} + 2}\right ) \left (\log {\relax (3 )}^{2} + 2\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-ln(3)**2-2)/(x*ln(3)**2-x**2+2*x),x)

[Out]

(log(x - 1 - 2*log(3)**2/(log(3)**2 + 2) - 2/(log(3)**2 + 2) - log(3)**2/2 - log(3)**4/(2*(log(3)**2 + 2)))/(l
og(3)**2 + 2) - log(x - 1 - log(3)**2/2 + log(3)**4/(2*(log(3)**2 + 2)) + 2/(log(3)**2 + 2) + 2*log(3)**2/(log
(3)**2 + 2))/(log(3)**2 + 2))*(log(3)**2 + 2)

________________________________________________________________________________________