Optimal. Leaf size=30 \[ e^{\frac {2 \left (x+\frac {\log \left (\frac {5}{\frac {40}{3}+e^x}\right )}{x (4+x)}\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 27.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 \left (4 x^2+x^3+\log \left (\frac {15}{40+3 e^x}\right )\right )}{4 x^2+x^3}\right ) \left (e^x \left (-24 x-6 x^2\right )+\left (-640+e^x (-48-18 x)-240 x\right ) \log \left (\frac {15}{40+3 e^x}\right )\right )}{640 x^3+320 x^4+40 x^5+e^x \left (48 x^3+24 x^4+3 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2\ 15^{\frac {2}{x^2 (4+x)}} e^2 \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} \left (-3 e^x x (4+x)-\left (40+3 e^x\right ) (8+3 x) \log \left (\frac {15}{40+3 e^x}\right )\right )}{x^3 (4+x)^2} \, dx\\ &=\left (2 e^2\right ) \int \frac {15^{\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} \left (-3 e^x x (4+x)-\left (40+3 e^x\right ) (8+3 x) \log \left (\frac {15}{40+3 e^x}\right )\right )}{x^3 (4+x)^2} \, dx\\ &=\left (2 e^2\right ) \int \left (-\frac {8\ 3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} (8+3 x) \log \left (\frac {15}{40+3 e^x}\right )}{x^3 (4+x)^2}-\frac {3^{1+\frac {2}{x^2 (4+x)}} 5^{\frac {2}{x^2 (4+x)}} e^x \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} \left (4 x+x^2+8 \log \left (\frac {15}{40+3 e^x}\right )+3 x \log \left (\frac {15}{40+3 e^x}\right )\right )}{x^3 (4+x)^2}\right ) \, dx\\ &=-\left (\left (2 e^2\right ) \int \frac {3^{1+\frac {2}{x^2 (4+x)}} 5^{\frac {2}{x^2 (4+x)}} e^x \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} \left (4 x+x^2+8 \log \left (\frac {15}{40+3 e^x}\right )+3 x \log \left (\frac {15}{40+3 e^x}\right )\right )}{x^3 (4+x)^2} \, dx\right )-\left (16 e^2\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} (8+3 x) \log \left (\frac {15}{40+3 e^x}\right )}{x^3 (4+x)^2} \, dx\\ &=-\left (\left (2 e^2\right ) \int \frac {3^{1+\frac {2}{x^2 (4+x)}} 5^{\frac {2}{x^2 (4+x)}} e^x \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} \left (x (4+x)+(8+3 x) \log \left (\frac {15}{40+3 e^x}\right )\right )}{x^3 (4+x)^2} \, dx\right )+\left (16 e^2\right ) \int \frac {3 e^x \left (-8 \int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^3} \, dx+\int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2} \, dx-\int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{(4+x)^2} \, dx\right )}{16 \left (40+3 e^x\right )} \, dx+\left (e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2} \, dx-\left (e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{(4+x)^2} \, dx-\left (8 e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^3} \, dx\\ &=-\left (\left (2 e^2\right ) \int \left (\frac {3^{1+\frac {2}{x^2 (4+x)}} 5^{\frac {2}{x^2 (4+x)}} e^x \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2 (4+x)}+\frac {3^{1+\frac {2}{x^2 (4+x)}} 5^{\frac {2}{x^2 (4+x)}} e^x \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} (8+3 x) \log \left (\frac {15}{40+3 e^x}\right )}{x^3 (4+x)^2}\right ) \, dx\right )+\left (3 e^2\right ) \int \frac {e^x \left (-8 \int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^3} \, dx+\int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2} \, dx-\int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{(4+x)^2} \, dx\right )}{40+3 e^x} \, dx+\left (e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2} \, dx-\left (e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{(4+x)^2} \, dx-\left (8 e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^3} \, dx\\ &=-\left (\left (2 e^2\right ) \int \frac {3^{1+\frac {2}{x^2 (4+x)}} 5^{\frac {2}{x^2 (4+x)}} e^x \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2 (4+x)} \, dx\right )-\left (2 e^2\right ) \int \frac {3^{1+\frac {2}{x^2 (4+x)}} 5^{\frac {2}{x^2 (4+x)}} e^x \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}} (8+3 x) \log \left (\frac {15}{40+3 e^x}\right )}{x^3 (4+x)^2} \, dx+\left (3 e^2\right ) \int \left (-\frac {8 e^x \int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^3} \, dx}{40+3 e^x}+\frac {e^x \int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2} \, dx}{40+3 e^x}-\frac {e^x \int \frac {5^{1+\frac {2}{x^2 (4+x)}} 9^{\frac {1}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{(4+x)^2} \, dx}{40+3 e^x}\right ) \, dx+\left (e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^2} \, dx-\left (e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{(4+x)^2} \, dx-\left (8 e^2 \log \left (\frac {15}{40+3 e^x}\right )\right ) \int \frac {3^{\frac {2}{x^2 (4+x)}} 5^{1+\frac {2}{x^2 (4+x)}} \left (\frac {1}{40+3 e^x}\right )^{1+\frac {2}{x^2 (4+x)}}}{x^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 6.25, size = 36, normalized size = 1.20 \begin {gather*} 15^{\frac {2}{x^2 (4+x)}} e^2 \left (\frac {1}{40+3 e^x}\right )^{\frac {2}{x^2 (4+x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 34, normalized size = 1.13 \begin {gather*} e^{\left (\frac {2 \, {\left (x^{3} + 4 \, x^{2} + \log \left (\frac {15}{3 \, e^{x} + 40}\right )\right )}}{x^{3} + 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.56, size = 58, normalized size = 1.93 \begin {gather*} e^{\left (\frac {2 \, x^{3}}{x^{3} + 4 \, x^{2}} + \frac {8 \, x^{2}}{x^{3} + 4 \, x^{2}} + \frac {2 \, \log \left (\frac {15}{3 \, e^{x} + 40}\right )}{x^{3} + 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 34, normalized size = 1.13
method | result | size |
risch | \(\left ({\mathrm e}^{x}+\frac {40}{3}\right )^{-\frac {2}{x^{2} \left (4+x \right )}} 5^{\frac {2}{x^{2} \left (4+x \right )}} {\mathrm e}^{2}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.74, size = 87, normalized size = 2.90 \begin {gather*} e^{\left (\frac {\log \relax (5)}{8 \, {\left (x + 4\right )}} - \frac {\log \relax (5)}{8 \, x} + \frac {\log \relax (3)}{8 \, {\left (x + 4\right )}} - \frac {\log \relax (3)}{8 \, x} - \frac {\log \left (3 \, e^{x} + 40\right )}{8 \, {\left (x + 4\right )}} + \frac {\log \left (3 \, e^{x} + 40\right )}{8 \, x} + \frac {\log \relax (5)}{2 \, x^{2}} + \frac {\log \relax (3)}{2 \, x^{2}} - \frac {\log \left (3 \, e^{x} + 40\right )}{2 \, x^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 57, normalized size = 1.90 \begin {gather*} {\mathrm {e}}^{\frac {2\,x^3}{x^3+4\,x^2}}\,{\mathrm {e}}^{\frac {8\,x^2}{x^3+4\,x^2}}\,{\left (\frac {225}{{\left (3\,{\mathrm {e}}^x+40\right )}^2}\right )}^{\frac {1}{x^3+4\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________