Optimal. Leaf size=27 \[ x \log \left (\frac {5 e^{-\frac {-4+x^2}{x}} (-3+x)}{6-3 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 26, number of rules used = 11, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.149, Rules used = {1594, 6728, 616, 31, 705, 29, 632, 703, 701, 2548, 1628} \begin {gather*} x \log \left (-\frac {5 e^{\frac {4}{x}-x} (3-x)}{3 (2-x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 616
Rule 632
Rule 701
Rule 703
Rule 705
Rule 1594
Rule 1628
Rule 2548
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-24+20 x-9 x^2+5 x^3-x^4+\left (6 x-5 x^2+x^3\right ) \log \left (\frac {e^{-\frac {-4+x^2}{x}} (15-5 x)}{-6+3 x}\right )}{x \left (6-5 x+x^2\right )} \, dx\\ &=\int \left (\frac {20}{6-5 x+x^2}-\frac {24}{x \left (6-5 x+x^2\right )}-\frac {9 x}{6-5 x+x^2}+\frac {5 x^2}{6-5 x+x^2}-\frac {x^3}{6-5 x+x^2}+\log \left (-\frac {5 e^{\frac {4}{x}-x} (-3+x)}{3 (-2+x)}\right )\right ) \, dx\\ &=5 \int \frac {x^2}{6-5 x+x^2} \, dx-9 \int \frac {x}{6-5 x+x^2} \, dx+20 \int \frac {1}{6-5 x+x^2} \, dx-24 \int \frac {1}{x \left (6-5 x+x^2\right )} \, dx-\int \frac {x^3}{6-5 x+x^2} \, dx+\int \log \left (-\frac {5 e^{\frac {4}{x}-x} (-3+x)}{3 (-2+x)}\right ) \, dx\\ &=5 x+x \log \left (-\frac {5 e^{\frac {4}{x}-x} (3-x)}{3 (2-x)}\right )-4 \int \frac {1}{x} \, dx-4 \int \frac {5-x}{6-5 x+x^2} \, dx+5 \int \frac {-6+5 x}{6-5 x+x^2} \, dx+18 \int \frac {1}{-2+x} \, dx+20 \int \frac {1}{-3+x} \, dx-20 \int \frac {1}{-2+x} \, dx-27 \int \frac {1}{-3+x} \, dx-\int \frac {-24+20 x-9 x^2+5 x^3-x^4}{x \left (6-5 x+x^2\right )} \, dx-\int \left (5+x-\frac {30-19 x}{6-5 x+x^2}\right ) \, dx\\ &=-\frac {x^2}{2}-2 \log (2-x)-7 \log (3-x)+x \log \left (-\frac {5 e^{\frac {4}{x}-x} (3-x)}{3 (2-x)}\right )-4 \log (x)-8 \int \frac {1}{-3+x} \, dx+12 \int \frac {1}{-2+x} \, dx-20 \int \frac {1}{-2+x} \, dx+45 \int \frac {1}{-3+x} \, dx-\int \left (\frac {3}{-3+x}-\frac {2}{-2+x}-\frac {4}{x}-x\right ) \, dx+\int \frac {30-19 x}{6-5 x+x^2} \, dx\\ &=-8 \log (2-x)+27 \log (3-x)+x \log \left (-\frac {5 e^{\frac {4}{x}-x} (3-x)}{3 (2-x)}\right )+8 \int \frac {1}{-2+x} \, dx-27 \int \frac {1}{-3+x} \, dx\\ &=x \log \left (-\frac {5 e^{\frac {4}{x}-x} (3-x)}{3 (2-x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 56, normalized size = 2.07 \begin {gather*} -4-2 \log (2-x)+3 \log (3-x)-3 \log (-3+x)+x \log \left (-\frac {5 e^{\frac {4}{x}-x} (-3+x)}{3 (-2+x)}\right )+2 \log (-2+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 24, normalized size = 0.89 \begin {gather*} x \log \left (-\frac {5 \, {\left (x - 3\right )} e^{\left (-\frac {x^{2} - 4}{x}\right )}}{3 \, {\left (x - 2\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 19, normalized size = 0.70 \begin {gather*} -x^{2} + x \log \left (-\frac {5 \, {\left (x - 3\right )}}{3 \, {\left (x - 2\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 29, normalized size = 1.07
method | result | size |
default | \(x \ln \left (\frac {\left (15-5 x \right ) {\mathrm e}^{-\frac {x^{2}-4}{x}}}{3 x -6}\right )\) | \(29\) |
norman | \(x \ln \left (\frac {\left (15-5 x \right ) {\mathrm e}^{-\frac {x^{2}-4}{x}}}{3 x -6}\right )\) | \(29\) |
risch | \(-x \ln \left ({\mathrm e}^{\frac {\left (x -2\right ) \left (2+x \right )}{x}}\right )-x \ln \left (x -2\right )+\ln \left (x -3\right ) x +\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x -2}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{x -2}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x -3\right )}{x -2}\right )^{3}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (x -3\right )}{x -2}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}} \left (x -3\right )}{x -2}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x -2}\right ) \mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{x -2}\right )}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}} \left (x -3\right )}{x -2}\right )^{3}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (x -3\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{x -2}\right )^{2}}{2}-i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}} \left (x -3\right )}{x -2}\right )^{2}+\frac {i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}} \left (x -3\right )}{x -2}\right )^{2}}{2}+i \pi x -\frac {i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}}\right ) \mathrm {csgn}\left (\frac {i \left (x -3\right )}{x -2}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{x}} \left (x -3\right )}{x -2}\right )}{2}+x \ln \relax (5)-x \ln \relax (3)\) | \(359\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.54, size = 200, normalized size = 7.41 \begin {gather*} {\left (i \, \pi + \log \relax (5) - \log \relax (3)\right )} x - x^{2} + {\left (6 i \, \pi - x + 6 \, \log \relax (5) - 6 \, \log \relax (3) + 6 \, \log \left (x - 3\right ) + 2\right )} \log \left (x - 2\right ) - 3 \, \log \left (x - 2\right )^{2} + {\left (-6 i \, \pi + x - 6 \, \log \relax (5) + 6 \, \log \relax (3) + 7\right )} \log \left (x - 3\right ) - 3 \, \log \left (x - 3\right )^{2} - 6 \, {\left (\log \left (x - 2\right ) - \log \left (x - 3\right )\right )} \log \left (-\frac {5 \, x e^{\left (-x + \frac {4}{x}\right )}}{3 \, {\left (x - 2\right )}} + \frac {5 \, e^{\left (-x + \frac {4}{x}\right )}}{x - 2}\right ) - \frac {3 \, x \log \left (x - 2\right )^{2} + 3 \, x \log \left (x - 3\right )^{2} + 6 \, {\left (x^{2} - x \log \left (x - 3\right ) - 4\right )} \log \left (x - 2\right ) - 2 \, {\left (3 \, x^{2} - 5 \, x - 12\right )} \log \left (x - 3\right )}{x} - 2 \, \log \left (x - 2\right ) + 3 \, \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.91, size = 23, normalized size = 0.85 \begin {gather*} x\,\ln \left (-\frac {5\,x-15}{3\,x-6}\right )-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 20, normalized size = 0.74 \begin {gather*} x \log {\left (\frac {\left (15 - 5 x\right ) e^{- \frac {x^{2} - 4}{x}}}{3 x - 6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________