Optimal. Leaf size=32 \[ e^{e^{-e^2} \left (x-\frac {1}{x^2 \left (1+\frac {2}{4+x^2}\right )}\right )}+x \]
________________________________________________________________________________________
Rubi [F] time = 12.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^2} \left (e^{e^2} \left (36 x^3+12 x^5+x^7\right )+\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{6 x^2+x^4}\right ) \left (48+16 x^2+36 x^3+2 x^4+12 x^5+x^7\right )\right )}{36 x^3+12 x^5+x^7} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-e^2} \int \frac {e^{e^2} \left (36 x^3+12 x^5+x^7\right )+\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{6 x^2+x^4}\right ) \left (48+16 x^2+36 x^3+2 x^4+12 x^5+x^7\right )}{36 x^3+12 x^5+x^7} \, dx\\ &=e^{-e^2} \int \frac {e^{e^2} \left (36 x^3+12 x^5+x^7\right )+\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{6 x^2+x^4}\right ) \left (48+16 x^2+36 x^3+2 x^4+12 x^5+x^7\right )}{x^3 \left (36+12 x^2+x^4\right )} \, dx\\ &=e^{-e^2} \int \frac {e^{e^2} \left (36 x^3+12 x^5+x^7\right )+\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{6 x^2+x^4}\right ) \left (48+16 x^2+36 x^3+2 x^4+12 x^5+x^7\right )}{x^3 \left (6+x^2\right )^2} \, dx\\ &=e^{-e^2} \int \left (e^{e^2}+\frac {\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right ) \left (48+16 x^2+36 x^3+2 x^4+12 x^5+x^7\right )}{x^3 \left (6+x^2\right )^2}\right ) \, dx\\ &=x+e^{-e^2} \int \frac {\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right ) \left (48+16 x^2+36 x^3+2 x^4+12 x^5+x^7\right )}{x^3 \left (6+x^2\right )^2} \, dx\\ &=x+e^{-e^2} \int \left (\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right )+\frac {4 \exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right )}{3 x^3}+\frac {2 \exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right ) x}{3 \left (6+x^2\right )^2}\right ) \, dx\\ &=x+\frac {1}{3} \left (2 e^{-e^2}\right ) \int \frac {\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right ) x}{\left (6+x^2\right )^2} \, dx+e^{-e^2} \int \exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right ) \, dx+\frac {1}{3} \left (4 e^{-e^2}\right ) \int \frac {\exp \left (\frac {e^{-e^2} \left (-4-x^2+6 x^3+x^5\right )}{x^2 \left (6+x^2\right )}\right )}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.96, size = 46, normalized size = 1.44 \begin {gather*} e^{-\frac {2 e^{-e^2}}{3 x^2}+e^{-e^2} x-\frac {e^{-e^2}}{3 \left (6+x^2\right )}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 35, normalized size = 1.09 \begin {gather*} x + e^{\left (\frac {{\left (x^{5} + 6 \, x^{3} - x^{2} - 4\right )} e^{\left (-e^{2}\right )}}{x^{4} + 6 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 52, normalized size = 1.62 \begin {gather*} x + e^{\left (\frac {x^{5} e^{\left (-e^{2}\right )} + 6 \, x^{3} e^{\left (-e^{2}\right )} - x^{2} e^{\left (-e^{2}\right )} - 4 \, e^{\left (-e^{2}\right )}}{x^{4} + 6 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 35, normalized size = 1.09
method | result | size |
risch | \(x +{\mathrm e}^{\frac {\left (x^{5}+6 x^{3}-x^{2}-4\right ) {\mathrm e}^{-{\mathrm e}^{2}}}{x^{2} \left (x^{2}+6\right )}}\) | \(35\) |
norman | \(\frac {x^{5}+x^{4} {\mathrm e}^{\frac {\left (x^{5}+6 x^{3}-x^{2}-4\right ) {\mathrm e}^{-{\mathrm e}^{2}}}{x^{4}+6 x^{2}}}+6 x^{3}+6 x^{2} {\mathrm e}^{\frac {\left (x^{5}+6 x^{3}-x^{2}-4\right ) {\mathrm e}^{-{\mathrm e}^{2}}}{x^{4}+6 x^{2}}}}{x^{2} \left (x^{2}+6\right )}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 132, normalized size = 4.12 \begin {gather*} -\frac {1}{2} \, {\left ({\left (3 \, \sqrt {6} \arctan \left (\frac {1}{6} \, \sqrt {6} x\right ) - 2 \, x - \frac {6 \, x}{x^{2} + 6}\right )} e^{\left (e^{2}\right )} - {\left (\sqrt {6} \arctan \left (\frac {1}{6} \, \sqrt {6} x\right ) + \frac {6 \, x}{x^{2} + 6}\right )} e^{\left (e^{2}\right )} - 2 \, {\left (\sqrt {6} \arctan \left (\frac {1}{6} \, \sqrt {6} x\right ) - \frac {6 \, x}{x^{2} + 6}\right )} e^{\left (e^{2}\right )} - 2 \, e^{\left (x e^{\left (-e^{2}\right )} - \frac {1}{3 \, {\left (x^{2} e^{\left (e^{2}\right )} + 6 \, e^{\left (e^{2}\right )}\right )}} - \frac {2 \, e^{\left (-e^{2}\right )}}{3 \, x^{2}} + e^{2}\right )}\right )} e^{\left (-e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 87, normalized size = 2.72 \begin {gather*} x+{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^{-{\mathrm {e}}^2}}{x^4+6\,x^2}}\,{\mathrm {e}}^{\frac {x^5\,{\mathrm {e}}^{-{\mathrm {e}}^2}}{x^4+6\,x^2}}\,{\mathrm {e}}^{\frac {6\,x^3\,{\mathrm {e}}^{-{\mathrm {e}}^2}}{x^4+6\,x^2}}\,{\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^{-{\mathrm {e}}^2}}{x^4+6\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 29, normalized size = 0.91 \begin {gather*} x + e^{\frac {x^{5} + 6 x^{3} - x^{2} - 4}{\left (x^{4} + 6 x^{2}\right ) e^{e^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________