3.73.54 \(\int \frac {(7 x+14 e^{2 x} x) \log (-\frac {10}{x})+(-7 e^{2 x}-7 x+(-7 e^{2 x} x-7 x^2) \log (-\frac {10}{x})) \log (e^{2 x}+x)}{3 e^{3 x} x+3 e^x x^2} \, dx\)

Optimal. Leaf size=23 \[ \frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 4.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (7 x+14 e^{2 x} x\right ) \log \left (-\frac {10}{x}\right )+\left (-7 e^{2 x}-7 x+\left (-7 e^{2 x} x-7 x^2\right ) \log \left (-\frac {10}{x}\right )\right ) \log \left (e^{2 x}+x\right )}{3 e^{3 x} x+3 e^x x^2} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[((7*x + 14*E^(2*x)*x)*Log[-10/x] + (-7*E^(2*x) - 7*x + (-7*E^(2*x)*x - 7*x^2)*Log[-10/x])*Log[E^(2*x) + x]
)/(3*E^(3*x)*x + 3*E^x*x^2),x]

[Out]

(-14*ExpIntegralEi[-x])/3 + (7*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -x])/3 - (14*Log[-10/x])/(3*E^x) - (7
*ExpIntegralEi[-x]*Log[-10/x])/3 - (7*EulerGamma*Log[x])/3 - (7*(ExpIntegralE[1, x] + ExpIntegralEi[-x])*Log[x
])/3 - (7*Log[x]^2)/6 + (7*Log[-10/x]*Log[E^(2*x) + x])/(3*E^x) + (7*Log[-10/x]*Defer[Int][1/(E^x*(E^(2*x) + x
)), x])/3 - (14*Log[-10/x]*Defer[Int][E^x/(E^(2*x) + x), x])/3 + (7*Log[-10/x]*Defer[Int][E^x/(x*(E^(2*x) + x)
), x])/3 - (14*Log[-10/x]*Defer[Int][x/(E^x*(E^(2*x) + x)), x])/3 + (7*Defer[Int][Defer[Int][1/(E^x*(E^(2*x) +
 x)), x]/x, x])/3 - (14*Defer[Int][Defer[Int][E^x/(E^(2*x) + x), x]/x, x])/3 + (7*Defer[Int][Defer[Int][E^x/(x
*(E^(2*x) + x)), x]/x, x])/3 - (14*Defer[Int][Defer[Int][x/(E^x*(E^(2*x) + x)), x]/x, x])/3

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (\left (7 x+14 e^{2 x} x\right ) \log \left (-\frac {10}{x}\right )+\left (-7 e^{2 x}-7 x+\left (-7 e^{2 x} x-7 x^2\right ) \log \left (-\frac {10}{x}\right )\right ) \log \left (e^{2 x}+x\right )\right )}{3 x \left (e^{2 x}+x\right )} \, dx\\ &=\frac {1}{3} \int \frac {e^{-x} \left (\left (7 x+14 e^{2 x} x\right ) \log \left (-\frac {10}{x}\right )+\left (-7 e^{2 x}-7 x+\left (-7 e^{2 x} x-7 x^2\right ) \log \left (-\frac {10}{x}\right )\right ) \log \left (e^{2 x}+x\right )\right )}{x \left (e^{2 x}+x\right )} \, dx\\ &=\frac {1}{3} \int \left (-\frac {7 e^{-x} (-1+2 x) \log \left (-\frac {10}{x}\right )}{e^{2 x}+x}-\frac {7 e^{-x} \left (-2 x \log \left (-\frac {10}{x}\right )+\log \left (e^{2 x}+x\right )+x \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )\right )}{x}\right ) \, dx\\ &=-\left (\frac {7}{3} \int \frac {e^{-x} (-1+2 x) \log \left (-\frac {10}{x}\right )}{e^{2 x}+x} \, dx\right )-\frac {7}{3} \int \frac {e^{-x} \left (-2 x \log \left (-\frac {10}{x}\right )+\log \left (e^{2 x}+x\right )+x \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )\right )}{x} \, dx\\ &=-\left (\frac {7}{3} \int \left (-2 e^{-x} \log \left (-\frac {10}{x}\right )+\frac {e^{-x} \left (1+x \log \left (-\frac {10}{x}\right )\right ) \log \left (e^{2 x}+x\right )}{x}\right ) \, dx\right )-\frac {7}{3} \int \frac {-\int \frac {e^{-x}}{e^{2 x}+x} \, dx+2 \int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\left (\frac {7}{3} \int \frac {e^{-x} \left (1+x \log \left (-\frac {10}{x}\right )\right ) \log \left (e^{2 x}+x\right )}{x} \, dx\right )-\frac {7}{3} \int \left (-\frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x}+\frac {2 \int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x}\right ) \, dx+\frac {14}{3} \int e^{-x} \log \left (-\frac {10}{x}\right ) \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \int \left (\frac {e^{-x} \log \left (e^{2 x}+x\right )}{x}+e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )\right ) \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx-\frac {14}{3} \int \frac {e^{-x}}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \int \frac {e^{-x} \log \left (e^{2 x}+x\right )}{x} \, dx-\frac {7}{3} \int e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right ) \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (e^{2 x}+x\right )+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )+\frac {7}{3} \int \frac {\left (1+2 e^{2 x}\right ) \text {Ei}(-x)}{e^{2 x}+x} \, dx-\frac {7}{3} \int \frac {e^{-x} \left (1+2 e^{2 x}\right ) \log \left (-\frac {10}{x}\right )}{e^{2 x}+x} \, dx+\frac {7}{3} \int \frac {e^{-x} \log \left (e^{2 x}+x\right )}{x} \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (-\frac {10}{x}\right )+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )-\frac {7}{3} \int \frac {\left (1+2 e^{2 x}\right ) \text {Ei}(-x)}{e^{2 x}+x} \, dx+\frac {7}{3} \int \left (2 \text {Ei}(-x)-\frac {(-1+2 x) \text {Ei}(-x)}{e^{2 x}+x}\right ) \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx-\frac {7}{3} \int \frac {\text {Ei}(-x)+2 \int \frac {e^x}{e^{2 x}+x} \, dx-\int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (-\frac {10}{x}\right )+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )-\frac {7}{3} \int \frac {(-1+2 x) \text {Ei}(-x)}{e^{2 x}+x} \, dx-\frac {7}{3} \int \left (2 \text {Ei}(-x)-\frac {(-1+2 x) \text {Ei}(-x)}{e^{2 x}+x}\right ) \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx-\frac {7}{3} \int \left (\frac {\text {Ei}(-x)+2 \int \frac {e^x}{e^{2 x}+x} \, dx}{x}-\frac {\int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx}{x}\right ) \, dx+\frac {14 \int \text {Ei}(-x) \, dx}{3}-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=\frac {14 e^{-x}}{3}-\frac {14 \text {Ei}(-x)}{3}+\frac {14 x \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (-\frac {10}{x}\right )+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )+\frac {7}{3} \int \frac {(-1+2 x) \text {Ei}(-x)}{e^{2 x}+x} \, dx-\frac {7}{3} \int \left (-\frac {\text {Ei}(-x)}{e^{2 x}+x}+\frac {2 x \text {Ei}(-x)}{e^{2 x}+x}\right ) \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx-\frac {7}{3} \int \frac {\text {Ei}(-x)+2 \int \frac {e^x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {7}{3} \int \frac {\int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx}{x} \, dx-\frac {14 \int \text {Ei}(-x) \, dx}{3}-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (-\frac {10}{x}\right )+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )+\frac {7}{3} \int \frac {\text {Ei}(-x)}{e^{2 x}+x} \, dx+\frac {7}{3} \int \left (-\frac {\text {Ei}(-x)}{e^{2 x}+x}+\frac {2 x \text {Ei}(-x)}{e^{2 x}+x}\right ) \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx-\frac {7}{3} \int \left (\frac {\text {Ei}(-x)}{x}+\frac {2 \int \frac {e^x}{e^{2 x}+x} \, dx}{x}\right ) \, dx+\frac {7}{3} \int \frac {\int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx}{x} \, dx-\frac {14}{3} \int \frac {x \text {Ei}(-x)}{e^{2 x}+x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (-\frac {10}{x}\right )+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )-\frac {7}{3} \int \frac {\text {Ei}(-x)}{x} \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx+\frac {7}{3} \int \frac {\int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^x}{e^{2 x}+x} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (-\frac {10}{x}\right )-\frac {7}{3} (E_1(x)+\text {Ei}(-x)) \log (x)+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )+\frac {7}{3} \int \frac {E_1(x)}{x} \, dx+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx+\frac {7}{3} \int \frac {\int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^x}{e^{2 x}+x} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ &=-\frac {14 \text {Ei}(-x)}{3}+\frac {7}{3} x \, _3F_3(1,1,1;2,2,2;-x)-\frac {14}{3} e^{-x} \log \left (-\frac {10}{x}\right )-\frac {7}{3} \text {Ei}(-x) \log \left (-\frac {10}{x}\right )-\frac {7}{3} \gamma \log (x)-\frac {7}{3} (E_1(x)+\text {Ei}(-x)) \log (x)-\frac {7 \log ^2(x)}{6}+\frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right )+\frac {7}{3} \int \frac {\int \frac {e^{-x}}{e^{2 x}+x} \, dx}{x} \, dx+\frac {7}{3} \int \frac {\int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^x}{e^{2 x}+x} \, dx}{x} \, dx-\frac {14}{3} \int \frac {\int \frac {e^{-x} x}{e^{2 x}+x} \, dx}{x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x}}{e^{2 x}+x} \, dx+\frac {1}{3} \left (7 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{x \left (e^{2 x}+x\right )} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^x}{e^{2 x}+x} \, dx-\frac {1}{3} \left (14 \log \left (-\frac {10}{x}\right )\right ) \int \frac {e^{-x} x}{e^{2 x}+x} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.54, size = 23, normalized size = 1.00 \begin {gather*} \frac {7}{3} e^{-x} \log \left (-\frac {10}{x}\right ) \log \left (e^{2 x}+x\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((7*x + 14*E^(2*x)*x)*Log[-10/x] + (-7*E^(2*x) - 7*x + (-7*E^(2*x)*x - 7*x^2)*Log[-10/x])*Log[E^(2*x
) + x])/(3*E^(3*x)*x + 3*E^x*x^2),x]

[Out]

(7*Log[-10/x]*Log[E^(2*x) + x])/(3*E^x)

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 19, normalized size = 0.83 \begin {gather*} \frac {7}{3} \, e^{\left (-x\right )} \log \left (x + e^{\left (2 \, x\right )}\right ) \log \left (-\frac {10}{x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="fricas")

[Out]

7/3*e^(-x)*log(x + e^(2*x))*log(-10/x)

________________________________________________________________________________________

giac [B]  time = 0.16, size = 68, normalized size = 2.96 \begin {gather*} \frac {7}{12} \, {\left (\pi ^{2} \mathrm {sgn}\left (x + e^{\left (2 \, x\right )}\right ) \mathrm {sgn}\relax (x) + \pi ^{2} \mathrm {sgn}\left (x + e^{\left (2 \, x\right )}\right ) - \pi ^{2} \mathrm {sgn}\relax (x) - \pi ^{2} + 4 \, \log \left (10\right ) \log \left ({\left | x + e^{\left (2 \, x\right )} \right |}\right ) - 4 \, \log \left ({\left | x + e^{\left (2 \, x\right )} \right |}\right ) \log \left ({\left | x \right |}\right )\right )} e^{\left (-x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="giac")

[Out]

7/12*(pi^2*sgn(x + e^(2*x))*sgn(x) + pi^2*sgn(x + e^(2*x)) - pi^2*sgn(x) - pi^2 + 4*log(10)*log(abs(x + e^(2*x
))) - 4*log(abs(x + e^(2*x)))*log(abs(x)))*e^(-x)

________________________________________________________________________________________

maple [C]  time = 0.12, size = 57, normalized size = 2.48




method result size



risch \(\frac {7 \left (-2 i \pi \mathrm {csgn}\left (\frac {i}{x}\right )^{2}+2 i \pi \mathrm {csgn}\left (\frac {i}{x}\right )^{3}+2 i \pi +2 \ln \relax (2)+2 \ln \relax (5)-2 \ln \relax (x )\right ) {\mathrm e}^{-x} \ln \left ({\mathrm e}^{2 x}+x \right )}{6}\) \(57\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-7*x*exp(x)^2-7*x^2)*ln(-10/x)-7*exp(x)^2-7*x)*ln(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*ln(-10/x))/(3*x*exp(x
)^3+3*exp(x)*x^2),x,method=_RETURNVERBOSE)

[Out]

7/6*(-2*I*Pi*csgn(I/x)^2+2*I*Pi*csgn(I/x)^3+2*I*Pi+2*ln(2)+2*ln(5)-2*ln(x))*exp(-x)*ln(exp(2*x)+x)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 24, normalized size = 1.04 \begin {gather*} \frac {7}{3} \, {\left (\log \relax (5) + \log \relax (2) - \log \left (-x\right )\right )} e^{\left (-x\right )} \log \left (x + e^{\left (2 \, x\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)^2-7*x^2)*log(-10/x)-7*exp(x)^2-7*x)*log(exp(x)^2+x)+(14*x*exp(x)^2+7*x)*log(-10/x))/(
3*x*exp(x)^3+3*exp(x)*x^2),x, algorithm="maxima")

[Out]

7/3*(log(5) + log(2) - log(-x))*e^(-x)*log(x + e^(2*x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (-\frac {10}{x}\right )\,\left (7\,x+14\,x\,{\mathrm {e}}^{2\,x}\right )-\ln \left (x+{\mathrm {e}}^{2\,x}\right )\,\left (7\,x+7\,{\mathrm {e}}^{2\,x}+\ln \left (-\frac {10}{x}\right )\,\left (7\,x\,{\mathrm {e}}^{2\,x}+7\,x^2\right )\right )}{3\,x\,{\mathrm {e}}^{3\,x}+3\,x^2\,{\mathrm {e}}^x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(-10/x)*(7*x + 14*x*exp(2*x)) - log(x + exp(2*x))*(7*x + 7*exp(2*x) + log(-10/x)*(7*x*exp(2*x) + 7*x^2
)))/(3*x*exp(3*x) + 3*x^2*exp(x)),x)

[Out]

int((log(-10/x)*(7*x + 14*x*exp(2*x)) - log(x + exp(2*x))*(7*x + 7*exp(2*x) + log(-10/x)*(7*x*exp(2*x) + 7*x^2
)))/(3*x*exp(3*x) + 3*x^2*exp(x)), x)

________________________________________________________________________________________

sympy [A]  time = 0.62, size = 20, normalized size = 0.87 \begin {gather*} \frac {7 e^{- x} \log {\left (- \frac {10}{x} \right )} \log {\left (x + e^{2 x} \right )}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x*exp(x)**2-7*x**2)*ln(-10/x)-7*exp(x)**2-7*x)*ln(exp(x)**2+x)+(14*x*exp(x)**2+7*x)*ln(-10/x))
/(3*x*exp(x)**3+3*exp(x)*x**2),x)

[Out]

7*exp(-x)*log(-10/x)*log(x + exp(2*x))/3

________________________________________________________________________________________