Optimal. Leaf size=17 \[ \frac {4}{3} x^2 \left (-1+3 x+x^2\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 26, normalized size of antiderivative = 1.53, number of steps used = 8, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {12, 1594, 2356, 2304} \begin {gather*} \frac {4}{3} x^4 \log (x)+4 x^3 \log (x)-\frac {4}{3} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2304
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (-4 x+12 x^2+4 x^3+\left (-8 x+36 x^2+16 x^3\right ) \log (x)\right ) \, dx\\ &=-\frac {2 x^2}{3}+\frac {4 x^3}{3}+\frac {x^4}{3}+\frac {1}{3} \int \left (-8 x+36 x^2+16 x^3\right ) \log (x) \, dx\\ &=-\frac {2 x^2}{3}+\frac {4 x^3}{3}+\frac {x^4}{3}+\frac {1}{3} \int x \left (-8+36 x+16 x^2\right ) \log (x) \, dx\\ &=-\frac {2 x^2}{3}+\frac {4 x^3}{3}+\frac {x^4}{3}+\frac {1}{3} \int \left (-8 x \log (x)+36 x^2 \log (x)+16 x^3 \log (x)\right ) \, dx\\ &=-\frac {2 x^2}{3}+\frac {4 x^3}{3}+\frac {x^4}{3}-\frac {8}{3} \int x \log (x) \, dx+\frac {16}{3} \int x^3 \log (x) \, dx+12 \int x^2 \log (x) \, dx\\ &=-\frac {4}{3} x^2 \log (x)+4 x^3 \log (x)+\frac {4}{3} x^4 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 1.53 \begin {gather*} -\frac {4}{3} x^2 \log (x)+4 x^3 \log (x)+\frac {4}{3} x^4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 18, normalized size = 1.06 \begin {gather*} \frac {4}{3} \, {\left (x^{4} + 3 \, x^{3} - x^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 22, normalized size = 1.29 \begin {gather*} \frac {4}{3} \, x^{4} \log \relax (x) + 4 \, x^{3} \log \relax (x) - \frac {4}{3} \, x^{2} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.94
method | result | size |
risch | \(\frac {4 x^{2} \left (x^{2}+3 x -1\right ) \ln \relax (x )}{3}\) | \(16\) |
default | \(\frac {4 x^{4} \ln \relax (x )}{3}+4 x^{3} \ln \relax (x )-\frac {4 x^{2} \ln \relax (x )}{3}\) | \(23\) |
norman | \(\frac {4 x^{4} \ln \relax (x )}{3}+4 x^{3} \ln \relax (x )-\frac {4 x^{2} \ln \relax (x )}{3}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 1.06 \begin {gather*} \frac {4}{3} \, {\left (x^{4} + 3 \, x^{3} - x^{2}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.37, size = 15, normalized size = 0.88 \begin {gather*} \frac {4\,x^2\,\ln \relax (x)\,\left (x^2+3\,x-1\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 20, normalized size = 1.18 \begin {gather*} \left (\frac {4 x^{4}}{3} + 4 x^{3} - \frac {4 x^{2}}{3}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________