Optimal. Leaf size=21 \[ \frac {1}{4} e^5 \left (4+\frac {4 (1+x)^2}{25 e^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 19, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 21} \begin {gather*} \frac {e^3 x^2}{25}+\frac {2 e^3 x}{25} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 21
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (2 e^3\right ) \int \frac {(1+x)^2}{25+25 x} \, dx\\ &=\frac {1}{25} \left (2 e^3\right ) \int (1+x) \, dx\\ &=\frac {2 e^3 x}{25}+\frac {e^3 x^2}{25}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 16, normalized size = 0.76 \begin {gather*} \frac {2}{25} e^3 \left (x+\frac {x^2}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 11, normalized size = 0.52 \begin {gather*} \frac {1}{25} \, {\left (x^{2} + 2 \, x\right )} e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 13, normalized size = 0.62 \begin {gather*} \frac {1}{25} \, x^{2} e^{3} + \frac {2}{25} \, x e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 14, normalized size = 0.67
method | result | size |
default | \(\frac {{\mathrm e}^{5} \left (x +1\right )^{2} {\mathrm e}^{-2}}{25}\) | \(14\) |
risch | \(\frac {x^{2} {\mathrm e}^{3}}{25}+\frac {2 x \,{\mathrm e}^{3}}{25}\) | \(14\) |
gosper | \(\frac {x \left (2+x \right ) {\mathrm e}^{5} {\mathrm e}^{-2}}{25}\) | \(23\) |
norman | \(\left (\frac {2 \,{\mathrm e}^{5} {\mathrm e}^{-1} x}{25}+\frac {{\mathrm e}^{5} {\mathrm e}^{-1} x^{2}}{25}\right ) {\mathrm e}^{-1}\) | \(27\) |
meijerg | \(\frac {2 \left (x +1\right )^{-2 \,{\mathrm e}^{-2}+2} {\mathrm e}^{5} \hypergeom \left (\left [1, 1-2 \,{\mathrm e}^{-2}\right ], \relax [2], -x \right ) x \,{\mathrm e}^{-2}}{25}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 11, normalized size = 0.52 \begin {gather*} \frac {1}{25} \, {\left (x^{2} + 2 \, x\right )} e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.34, size = 8, normalized size = 0.38 \begin {gather*} \frac {x\,{\mathrm {e}}^3\,\left (x+2\right )}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 15, normalized size = 0.71 \begin {gather*} \frac {x^{2} e^{3}}{25} + \frac {2 x e^{3}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________