Optimal. Leaf size=19 \[ -7+e^{2+x}+\frac {5 x}{2}+\frac {1}{-3+x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 52, normalized size of antiderivative = 2.74, number of steps used = 12, number of rules used = 8, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {28, 6742, 2194, 199, 207, 261, 288, 321} \begin {gather*} -\frac {15 x}{4 \left (3-x^2\right )}-\frac {1}{3-x^2}+\frac {5 x^3}{4 \left (3-x^2\right )}+\frac {15 x}{4}+e^{x+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 199
Rule 207
Rule 261
Rule 288
Rule 321
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int \frac {45-4 x-30 x^2+5 x^4+e^{2+x} \left (18-12 x^2+2 x^4\right )}{\left (-6+2 x^2\right )^2} \, dx\\ &=2 \int \left (\frac {e^{2+x}}{2}+\frac {45}{4 \left (-3+x^2\right )^2}-\frac {x}{\left (-3+x^2\right )^2}-\frac {15 x^2}{2 \left (-3+x^2\right )^2}+\frac {5 x^4}{4 \left (-3+x^2\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x}{\left (-3+x^2\right )^2} \, dx\right )+\frac {5}{2} \int \frac {x^4}{\left (-3+x^2\right )^2} \, dx-15 \int \frac {x^2}{\left (-3+x^2\right )^2} \, dx+\frac {45}{2} \int \frac {1}{\left (-3+x^2\right )^2} \, dx+\int e^{2+x} \, dx\\ &=e^{2+x}-\frac {1}{3-x^2}-\frac {15 x}{4 \left (3-x^2\right )}+\frac {5 x^3}{4 \left (3-x^2\right )}-\frac {15}{4} \int \frac {1}{-3+x^2} \, dx+\frac {15}{4} \int \frac {x^2}{-3+x^2} \, dx-\frac {15}{2} \int \frac {1}{-3+x^2} \, dx\\ &=e^{2+x}+\frac {15 x}{4}-\frac {1}{3-x^2}-\frac {15 x}{4 \left (3-x^2\right )}+\frac {5 x^3}{4 \left (3-x^2\right )}+\frac {15}{4} \sqrt {3} \tanh ^{-1}\left (\frac {x}{\sqrt {3}}\right )+\frac {45}{4} \int \frac {1}{-3+x^2} \, dx\\ &=e^{2+x}+\frac {15 x}{4}-\frac {1}{3-x^2}-\frac {15 x}{4 \left (3-x^2\right )}+\frac {5 x^3}{4 \left (3-x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 33, normalized size = 1.74 \begin {gather*} \frac {2-15 x+5 x^3+2 e^{2+x} \left (-3+x^2\right )}{2 \left (-3+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 30, normalized size = 1.58 \begin {gather*} \frac {5 \, x^{3} + 2 \, {\left (x^{2} - 3\right )} e^{\left (x + 2\right )} - 15 \, x + 2}{2 \, {\left (x^{2} - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 34, normalized size = 1.79 \begin {gather*} \frac {5 \, x^{3} + 2 \, x^{2} e^{\left (x + 2\right )} - 15 \, x - 6 \, e^{\left (x + 2\right )} + 2}{2 \, {\left (x^{2} - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 16, normalized size = 0.84
method | result | size |
risch | \(\frac {5 x}{2}+\frac {1}{x^{2}-3}+{\mathrm e}^{2+x}\) | \(16\) |
norman | \(\frac {x^{2} {\mathrm e}^{2+x}-\frac {15 x}{2}+\frac {5 x^{3}}{2}-3 \,{\mathrm e}^{2+x}+1}{x^{2}-3}\) | \(33\) |
derivativedivides | \(-\frac {13 x}{12 \left (\left (2+x \right )^{2}-7-4 x \right )}+\frac {\frac {22 x}{3}+11}{\left (2+x \right )^{2}-7-4 x}+\frac {-90-\frac {105 x}{2}}{\left (2+x \right )^{2}-7-4 x}-\frac {20 \left (-\frac {15}{2}-\frac {13 x}{3}\right )}{\left (2+x \right )^{2}-7-4 x}+5+\frac {5 x}{2}+\frac {-70-\frac {485 x}{12}}{\left (2+x \right )^{2}-7-4 x}-\frac {{\mathrm e}^{2+x} x}{6 \left (\left (2+x \right )^{2}-7-4 x \right )}+\frac {4 \,{\mathrm e}^{2+x} \left (2 x +3\right )}{3 \left (\left (2+x \right )^{2}-7-4 x \right )}-\frac {3 \,{\mathrm e}^{2+x} \left (12+7 x \right )}{\left (2+x \right )^{2}-7-4 x}+\frac {4 \,{\mathrm e}^{2+x} \left (45+26 x \right )}{3 \left (\left (2+x \right )^{2}-7-4 x \right )}+{\mathrm e}^{2+x}-\frac {{\mathrm e}^{2+x} \left (168+97 x \right )}{6 \left (\left (2+x \right )^{2}-7-4 x \right )}\) | \(212\) |
default | \(-\frac {13 x}{12 \left (\left (2+x \right )^{2}-7-4 x \right )}+\frac {\frac {22 x}{3}+11}{\left (2+x \right )^{2}-7-4 x}+\frac {-90-\frac {105 x}{2}}{\left (2+x \right )^{2}-7-4 x}-\frac {20 \left (-\frac {15}{2}-\frac {13 x}{3}\right )}{\left (2+x \right )^{2}-7-4 x}+5+\frac {5 x}{2}+\frac {-70-\frac {485 x}{12}}{\left (2+x \right )^{2}-7-4 x}-\frac {{\mathrm e}^{2+x} x}{6 \left (\left (2+x \right )^{2}-7-4 x \right )}+\frac {4 \,{\mathrm e}^{2+x} \left (2 x +3\right )}{3 \left (\left (2+x \right )^{2}-7-4 x \right )}-\frac {3 \,{\mathrm e}^{2+x} \left (12+7 x \right )}{\left (2+x \right )^{2}-7-4 x}+\frac {4 \,{\mathrm e}^{2+x} \left (45+26 x \right )}{3 \left (\left (2+x \right )^{2}-7-4 x \right )}+{\mathrm e}^{2+x}-\frac {{\mathrm e}^{2+x} \left (168+97 x \right )}{6 \left (\left (2+x \right )^{2}-7-4 x \right )}\) | \(212\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 15, normalized size = 0.79 \begin {gather*} \frac {5}{2} \, x + \frac {1}{x^{2} - 3} + e^{\left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.30, size = 19, normalized size = 1.00 \begin {gather*} \frac {5\,x}{2}+{\mathrm {e}}^{x+2}+\frac {2}{2\,x^2-6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.79 \begin {gather*} \frac {5 x}{2} + e^{x + 2} + \frac {1}{x^{2} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________