Optimal. Leaf size=25 \[ -1+x+\frac {x}{\frac {1}{625}+2 x+\frac {1}{3} e^4 \log \left (\frac {1}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5634+1171875 e^4+22500 x+14062500 x^2+e^4 (1175625+4687500 x) \log \left (\frac {1}{x}\right )+390625 e^8 \log ^2\left (\frac {1}{x}\right )}{9+22500 x+14062500 x^2+e^4 (3750+4687500 x) \log \left (\frac {1}{x}\right )+390625 e^8 \log ^2\left (\frac {1}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5634 \left (1+\frac {390625 e^4}{1878}\right )+22500 x+14062500 x^2+e^4 (1175625+4687500 x) \log \left (\frac {1}{x}\right )+390625 e^8 \log ^2\left (\frac {1}{x}\right )}{\left (3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=\int \left (1+\frac {1171875 \left (e^4-6 x\right )}{\left (3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )\right )^2}+\frac {1875}{3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )}\right ) \, dx\\ &=x+1875 \int \frac {1}{3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )} \, dx+1171875 \int \frac {e^4-6 x}{\left (3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ &=x+1875 \int \frac {1}{3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )} \, dx+1171875 \int \left (\frac {e^4}{\left (3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )\right )^2}-\frac {6 x}{\left (3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )\right )^2}\right ) \, dx\\ &=x+1875 \int \frac {1}{3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )} \, dx-7031250 \int \frac {x}{\left (3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )\right )^2} \, dx+\left (1171875 e^4\right ) \int \frac {1}{\left (3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 21, normalized size = 0.84 \begin {gather*} x+\frac {1875 x}{3+3750 x+625 e^4 \log \left (\frac {1}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 34, normalized size = 1.36 \begin {gather*} \frac {625 \, x e^{4} \log \left (\frac {1}{x}\right ) + 3750 \, x^{2} + 1878 \, x}{625 \, e^{4} \log \left (\frac {1}{x}\right ) + 3750 \, x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 21, normalized size = 0.84
method | result | size |
risch | \(x +\frac {1875 x}{625 \,{\mathrm e}^{4} \ln \left (\frac {1}{x}\right )+3750 x +3}\) | \(21\) |
norman | \(\frac {1878 x +3750 x^{2}+625 \,{\mathrm e}^{4} \ln \left (\frac {1}{x}\right ) x}{625 \,{\mathrm e}^{4} \ln \left (\frac {1}{x}\right )+3750 x +3}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 30, normalized size = 1.20 \begin {gather*} \frac {625 \, x e^{4} \log \relax (x) - 3750 \, x^{2} - 1878 \, x}{625 \, e^{4} \log \relax (x) - 3750 \, x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.27, size = 20, normalized size = 0.80 \begin {gather*} x+\frac {1875\,x}{3750\,x+625\,\ln \left (\frac {1}{x}\right )\,{\mathrm {e}}^4+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 0.76 \begin {gather*} x + \frac {1875 x}{3750 x + 625 e^{4} \log {\left (\frac {1}{x} \right )} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________