Optimal. Leaf size=33 \[ \frac {4+3 \left (2+x+x (5+x)+\frac {\left (e^5-x-\log (x)\right )^2}{x^2}\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 98, normalized size of antiderivative = 2.97, number of steps used = 10, number of rules used = 6, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {14, 43, 2334, 12, 2305, 2304} \begin {gather*} \frac {e^5 \left (2+3 e^5\right )}{x^3}-\frac {2 \left (1+3 e^5\right )}{3 x^3}+\frac {2}{3 x^3}+\frac {3 \log ^2(x)}{x^3}+\frac {2 \log (x)}{x^3}-\frac {3 \left (1+2 e^5\right )}{x^2}+\frac {3}{x^2}-2 \left (\frac {1+3 e^5}{x^3}-\frac {3}{x^2}\right ) \log (x)+3 x+\frac {13}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2304
Rule 2305
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-3 e^5 \left (2+3 e^5\right )+6 \left (1+2 e^5\right ) x-13 x^2+3 x^4}{x^4}+\frac {6 \left (1+3 e^5-2 x\right ) \log (x)}{x^4}-\frac {9 \log ^2(x)}{x^4}\right ) \, dx\\ &=6 \int \frac {\left (1+3 e^5-2 x\right ) \log (x)}{x^4} \, dx-9 \int \frac {\log ^2(x)}{x^4} \, dx+\int \frac {-3 e^5 \left (2+3 e^5\right )+6 \left (1+2 e^5\right ) x-13 x^2+3 x^4}{x^4} \, dx\\ &=-2 \left (\frac {1+3 e^5}{x^3}-\frac {3}{x^2}\right ) \log (x)+\frac {3 \log ^2(x)}{x^3}-6 \int \frac {-1-3 e^5+3 x}{3 x^4} \, dx-6 \int \frac {\log (x)}{x^4} \, dx+\int \left (3-\frac {3 e^5 \left (2+3 e^5\right )}{x^4}+\frac {6 \left (1+2 e^5\right )}{x^3}-\frac {13}{x^2}\right ) \, dx\\ &=\frac {2}{3 x^3}+\frac {e^5 \left (2+3 e^5\right )}{x^3}-\frac {3 \left (1+2 e^5\right )}{x^2}+\frac {13}{x}+3 x-2 \left (\frac {1+3 e^5}{x^3}-\frac {3}{x^2}\right ) \log (x)+\frac {2 \log (x)}{x^3}+\frac {3 \log ^2(x)}{x^3}-2 \int \frac {-1-3 e^5+3 x}{x^4} \, dx\\ &=\frac {2}{3 x^3}+\frac {e^5 \left (2+3 e^5\right )}{x^3}-\frac {3 \left (1+2 e^5\right )}{x^2}+\frac {13}{x}+3 x-2 \left (\frac {1+3 e^5}{x^3}-\frac {3}{x^2}\right ) \log (x)+\frac {2 \log (x)}{x^3}+\frac {3 \log ^2(x)}{x^3}-2 \int \left (\frac {-1-3 e^5}{x^4}+\frac {3}{x^3}\right ) \, dx\\ &=\frac {2}{3 x^3}-\frac {2 \left (1+3 e^5\right )}{3 x^3}+\frac {e^5 \left (2+3 e^5\right )}{x^3}+\frac {3}{x^2}-\frac {3 \left (1+2 e^5\right )}{x^2}+\frac {13}{x}+3 x-2 \left (\frac {1+3 e^5}{x^3}-\frac {3}{x^2}\right ) \log (x)+\frac {2 \log (x)}{x^3}+\frac {3 \log ^2(x)}{x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 51, normalized size = 1.55 \begin {gather*} \frac {3 e^{10}}{x^3}-\frac {6 e^5}{x^2}+\frac {13}{x}+3 x-\frac {6 e^5 \log (x)}{x^3}+\frac {6 \log (x)}{x^2}+\frac {3 \log ^2(x)}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 40, normalized size = 1.21 \begin {gather*} \frac {3 \, x^{4} + 13 \, x^{2} - 6 \, x e^{5} + 6 \, {\left (x - e^{5}\right )} \log \relax (x) + 3 \, \log \relax (x)^{2} + 3 \, e^{10}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 41, normalized size = 1.24 \begin {gather*} \frac {3 \, x^{4} + 13 \, x^{2} - 6 \, x e^{5} + 6 \, x \log \relax (x) - 6 \, e^{5} \log \relax (x) + 3 \, \log \relax (x)^{2} + 3 \, e^{10}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 44, normalized size = 1.33
method | result | size |
norman | \(\frac {13 x^{2}+3 x^{4}+3 \,{\mathrm e}^{10}+3 \ln \relax (x )^{2}-6 x \,{\mathrm e}^{5}+6 x \ln \relax (x )-6 \,{\mathrm e}^{5} \ln \relax (x )}{x^{3}}\) | \(44\) |
risch | \(\frac {3 \ln \relax (x )^{2}}{x^{3}}-\frac {6 \left ({\mathrm e}^{5}-x \right ) \ln \relax (x )}{x^{3}}+\frac {3 x^{4}+3 \,{\mathrm e}^{10}-6 x \,{\mathrm e}^{5}+13 x^{2}}{x^{3}}\) | \(48\) |
default | \(3 x +\frac {3 \ln \relax (x )^{2}}{x^{3}}+18 \,{\mathrm e}^{5} \left (-\frac {\ln \relax (x )}{3 x^{3}}-\frac {1}{9 x^{3}}\right )+\frac {6 \ln \relax (x )}{x^{2}}+\frac {3 \,{\mathrm e}^{10}}{x^{3}}-\frac {6 \,{\mathrm e}^{5}}{x^{2}}+\frac {13}{x}+\frac {2 \,{\mathrm e}^{5}}{x^{3}}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 81, normalized size = 2.45 \begin {gather*} -2 \, {\left (\frac {3 \, \log \relax (x)}{x^{3}} + \frac {1}{x^{3}}\right )} e^{5} + 3 \, x + \frac {13}{x} - \frac {6 \, e^{5}}{x^{2}} + \frac {6 \, \log \relax (x)}{x^{2}} + \frac {9 \, \log \relax (x)^{2} + 6 \, \log \relax (x) + 2}{3 \, x^{3}} + \frac {3 \, e^{10}}{x^{3}} + \frac {2 \, e^{5}}{x^{3}} - \frac {2 \, \log \relax (x)}{x^{3}} - \frac {2}{3 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.27, size = 42, normalized size = 1.27 \begin {gather*} 3\,x+\frac {3\,{\mathrm {e}}^{10}-x\,\left (6\,{\mathrm {e}}^5-6\,\ln \relax (x)\right )+3\,{\ln \relax (x)}^2-6\,{\mathrm {e}}^5\,\ln \relax (x)+13\,x^2}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 48, normalized size = 1.45 \begin {gather*} 3 x + \frac {\left (6 x - 6 e^{5}\right ) \log {\relax (x )}}{x^{3}} + \frac {13 x^{2} - 6 x e^{5} + 3 e^{10}}{x^{3}} + \frac {3 \log {\relax (x )}^{2}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________