Optimal. Leaf size=16 \[ e^x-\frac {(5+x) \log ^3(x)}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 22, normalized size of antiderivative = 1.38, number of steps used = 19, number of rules used = 6, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {14, 2194, 6742, 2353, 2305, 2304} \begin {gather*} -\frac {5 \log ^3(x)}{x^2}+e^x-\frac {\log ^3(x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2304
Rule 2305
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x+\frac {\log ^2(x) (-15-3 x+10 \log (x)+x \log (x))}{x^3}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {\log ^2(x) (-15-3 x+10 \log (x)+x \log (x))}{x^3} \, dx\\ &=e^x+\int \left (-\frac {3 (5+x) \log ^2(x)}{x^3}+\frac {(10+x) \log ^3(x)}{x^3}\right ) \, dx\\ &=e^x-3 \int \frac {(5+x) \log ^2(x)}{x^3} \, dx+\int \frac {(10+x) \log ^3(x)}{x^3} \, dx\\ &=e^x-3 \int \left (\frac {5 \log ^2(x)}{x^3}+\frac {\log ^2(x)}{x^2}\right ) \, dx+\int \left (\frac {10 \log ^3(x)}{x^3}+\frac {\log ^3(x)}{x^2}\right ) \, dx\\ &=e^x-3 \int \frac {\log ^2(x)}{x^2} \, dx+10 \int \frac {\log ^3(x)}{x^3} \, dx-15 \int \frac {\log ^2(x)}{x^3} \, dx+\int \frac {\log ^3(x)}{x^2} \, dx\\ &=e^x+\frac {15 \log ^2(x)}{2 x^2}+\frac {3 \log ^2(x)}{x}-\frac {5 \log ^3(x)}{x^2}-\frac {\log ^3(x)}{x}+3 \int \frac {\log ^2(x)}{x^2} \, dx-6 \int \frac {\log (x)}{x^2} \, dx-15 \int \frac {\log (x)}{x^3} \, dx+15 \int \frac {\log ^2(x)}{x^3} \, dx\\ &=e^x+\frac {15}{4 x^2}+\frac {6}{x}+\frac {15 \log (x)}{2 x^2}+\frac {6 \log (x)}{x}-\frac {5 \log ^3(x)}{x^2}-\frac {\log ^3(x)}{x}+6 \int \frac {\log (x)}{x^2} \, dx+15 \int \frac {\log (x)}{x^3} \, dx\\ &=e^x-\frac {5 \log ^3(x)}{x^2}-\frac {\log ^3(x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 1.38 \begin {gather*} e^x-\frac {5 \log ^3(x)}{x^2}-\frac {\log ^3(x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 21, normalized size = 1.31 \begin {gather*} -\frac {{\left (x + 5\right )} \log \relax (x)^{3} - x^{2} e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 25, normalized size = 1.56 \begin {gather*} -\frac {x \log \relax (x)^{3} - x^{2} e^{x} + 5 \, \log \relax (x)^{3}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 1.00
method | result | size |
risch | \(-\frac {\ln \relax (x )^{3} \left (5+x \right )}{x^{2}}+{\mathrm e}^{x}\) | \(16\) |
default | \(-\frac {\ln \relax (x )^{3}}{x}-\frac {5 \ln \relax (x )^{3}}{x^{2}}+{\mathrm e}^{x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 79, normalized size = 4.94 \begin {gather*} -\frac {\log \relax (x)^{3} + 3 \, \log \relax (x)^{2} + 6 \, \log \relax (x) + 6}{x} + \frac {3 \, {\left (\log \relax (x)^{2} + 2 \, \log \relax (x) + 2\right )}}{x} - \frac {5 \, {\left (4 \, \log \relax (x)^{3} + 6 \, \log \relax (x)^{2} + 6 \, \log \relax (x) + 3\right )}}{4 \, x^{2}} + \frac {15 \, {\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )}}{4 \, x^{2}} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.25, size = 21, normalized size = 1.31 \begin {gather*} {\mathrm {e}}^x-\frac {x\,{\ln \relax (x)}^3+5\,{\ln \relax (x)}^3}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 15, normalized size = 0.94 \begin {gather*} e^{x} + \frac {\left (- x - 5\right ) \log {\relax (x )}^{3}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________