Optimal. Leaf size=21 \[ (5+x) \left (-2+\frac {e^x x}{2}+x^2 (1+x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 35, normalized size of antiderivative = 1.67, number of steps used = 10, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {12, 2196, 2194, 2176} \begin {gather*} x^4+6 x^3+\frac {e^x x^2}{2}+5 x^2+\frac {5 e^x x}{2}-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (-4+20 x+36 x^2+8 x^3+e^x \left (5+7 x+x^2\right )\right ) \, dx\\ &=-2 x+5 x^2+6 x^3+x^4+\frac {1}{2} \int e^x \left (5+7 x+x^2\right ) \, dx\\ &=-2 x+5 x^2+6 x^3+x^4+\frac {1}{2} \int \left (5 e^x+7 e^x x+e^x x^2\right ) \, dx\\ &=-2 x+5 x^2+6 x^3+x^4+\frac {1}{2} \int e^x x^2 \, dx+\frac {5 \int e^x \, dx}{2}+\frac {7}{2} \int e^x x \, dx\\ &=\frac {5 e^x}{2}-2 x+\frac {7 e^x x}{2}+5 x^2+\frac {e^x x^2}{2}+6 x^3+x^4-\frac {7 \int e^x \, dx}{2}-\int e^x x \, dx\\ &=-e^x-2 x+\frac {5 e^x x}{2}+5 x^2+\frac {e^x x^2}{2}+6 x^3+x^4+\int e^x \, dx\\ &=-2 x+\frac {5 e^x x}{2}+5 x^2+\frac {e^x x^2}{2}+6 x^3+x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 31, normalized size = 1.48 \begin {gather*} -2 x+5 x^2+6 x^3+x^4+\frac {1}{2} e^x \left (5 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 28, normalized size = 1.33 \begin {gather*} x^{4} + 6 \, x^{3} + 5 \, x^{2} + \frac {1}{2} \, {\left (x^{2} + 5 \, x\right )} e^{x} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 28, normalized size = 1.33 \begin {gather*} x^{4} + 6 \, x^{3} + 5 \, x^{2} + \frac {1}{2} \, {\left (x^{2} + 5 \, x\right )} e^{x} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.38
method | result | size |
risch | \(\frac {\left (x^{2}+5 x \right ) {\mathrm e}^{x}}{2}+x^{4}+6 x^{3}+5 x^{2}-2 x\) | \(29\) |
default | \(x^{4}+6 x^{3}+5 x^{2}-2 x +\frac {{\mathrm e}^{x} x^{2}}{2}+\frac {5 \,{\mathrm e}^{x} x}{2}\) | \(30\) |
norman | \(x^{4}+6 x^{3}+5 x^{2}-2 x +\frac {{\mathrm e}^{x} x^{2}}{2}+\frac {5 \,{\mathrm e}^{x} x}{2}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 28, normalized size = 1.33 \begin {gather*} x^{4} + 6 \, x^{3} + 5 \, x^{2} + \frac {1}{2} \, {\left (x^{2} + 5 \, x\right )} e^{x} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.23, size = 26, normalized size = 1.24 \begin {gather*} \frac {x\,\left (10\,x+5\,{\mathrm {e}}^x+x\,{\mathrm {e}}^x+12\,x^2+2\,x^3-4\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 27, normalized size = 1.29 \begin {gather*} x^{4} + 6 x^{3} + 5 x^{2} - 2 x + \frac {\left (x^{2} + 5 x\right ) e^{x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________