Optimal. Leaf size=38 \[ \frac {x}{(2-x) \log \left (\log \left (\frac {4}{x^2+(2+x) \left (x-\left (1-e^x\right ) \log (2)\right )}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 44.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x+6 x^2-4 x^3+\left (-2 x+x^2\right ) \log (2)+e^x \left (6 x-x^2-x^3\right ) \log (2)+\left (4 x+4 x^2+(-4-2 x) \log (2)+e^x (4+2 x) \log (2)\right ) \log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right ) \log \left (\log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right )\right )}{\left (8 x-6 x^3+2 x^4+\left (-8+4 x+2 x^2-x^3\right ) \log (2)+e^x \left (8-4 x-2 x^2+x^3\right ) \log (2)\right ) \log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+6 x^2-4 x^3+\left (-2 x+x^2\right ) \log (2)+e^x \left (6 x-x^2-x^3\right ) \log (2)+\left (4 x+4 x^2+(-4-2 x) \log (2)+e^x (4+2 x) \log (2)\right ) \log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right ) \log \left (\log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right )\right )}{(2-x)^2 \left (2 x^2+2 x \left (1-\frac {\log (2)}{2}\right )+e^x x \log (2)-\log (4)+e^x \log (4)\right ) \log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2+(-2-x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \, dx\\ &=\int \left (\frac {x \left (-x^3 \log ^2(2)+x^4 \log (4)-x^2 \log (2) (12+\log (4))+\log (4) \log (16)+x \left (4 \log ^2(2)+\log (16)\right )+\log (256)\right )}{(2-x)^2 (x \log (2)+\log (4)) \left (2 x^2+2 x \left (1-\frac {\log (2)}{2}\right )+e^x x \log (2)-\log (4)+e^x \log (4)\right ) \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )}-\frac {\log (2) \left (-6 x+x^2+x^3-4 \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log \left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )-2 x \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log \left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )\right )}{(-2+x)^2 (x \log (2)+\log (4)) \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )}\right ) \, dx\\ &=-\left (\log (2) \int \frac {-6 x+x^2+x^3-4 \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log \left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )-2 x \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log \left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )}{(-2+x)^2 (x \log (2)+\log (4)) \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \, dx\right )+\int \frac {x \left (-x^3 \log ^2(2)+x^4 \log (4)-x^2 \log (2) (12+\log (4))+\log (4) \log (16)+x \left (4 \log ^2(2)+\log (16)\right )+\log (256)\right )}{(2-x)^2 (x \log (2)+\log (4)) \left (2 x^2+2 x \left (1-\frac {\log (2)}{2}\right )+e^x x \log (2)-\log (4)+e^x \log (4)\right ) \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \, dx\\ &=-\left (\log (2) \int \frac {\frac {x \left (-6+x+x^2\right )}{\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )}-2 (2+x) \log \left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )}{(2-x)^2 (x \log (2)+\log (4)) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \, dx\right )+\int \frac {x \left (24 \log (2)+x^2 \left (\log ^2(2)-2 \log (4)\right )-8 \log (4)-x^3 \log (4)+2 \log (2) \log (4)+x \left (12 \log (2)+2 \log ^2(2)-4 \log (4)+\log (2) \log (4)\right )-\log (16)\right )}{(2-x) (x \log (2)+\log (4)) \left (2 x^2+2 x \left (1-\frac {\log (2)}{2}\right )+e^x x \log (2)-\log (4)+e^x \log (4)\right ) \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \, dx\\ &=-\left (\log (2) \int \left (\frac {x (3+x)}{(-2+x) (x \log (2)+\log (4)) \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )}-\frac {2}{(2-x)^2 \log (2) \log \left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )}\right ) \, dx\right )+\int \frac {x \left (x^2 \left (\log ^2(2)-2 \log (4)\right )-x^3 \log (4)+\log ^2(4)+\log (16)+x \left (2 \log ^2(2)+\log (2) \log (4)+\log (16)\right )\right )}{(2-x) (x \log (2)+\log (4)) \left (2 x^2+2 x \left (1-\frac {\log (2)}{2}\right )+e^x x \log (2)-\log (4)+e^x \log (4)\right ) \log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right ) \log ^2\left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 41, normalized size = 1.08 \begin {gather*} -\frac {x}{(-2+x) \log \left (\log \left (\frac {4}{2 x+2 x^2-(2+x) \log (2)+e^x (2+x) \log (2)}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 40, normalized size = 1.05 \begin {gather*} -\frac {x}{{\left (x - 2\right )} \log \left (\log \left (\frac {4}{{\left (x + 2\right )} e^{x} \log \relax (2) + 2 \, x^{2} - {\left (x + 2\right )} \log \relax (2) + 2 \, x}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.51, size = 88, normalized size = 2.32 \begin {gather*} -\frac {x}{x \log \left (2 \, \log \relax (2) - \log \left (x e^{x} \log \relax (2) + 2 \, x^{2} - x \log \relax (2) + 2 \, e^{x} \log \relax (2) + 2 \, x - 2 \, \log \relax (2)\right )\right ) - 2 \, \log \left (2 \, \log \relax (2) - \log \left (x e^{x} \log \relax (2) + 2 \, x^{2} - x \log \relax (2) + 2 \, e^{x} \log \relax (2) + 2 \, x - 2 \, \log \relax (2)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 44, normalized size = 1.16
method | result | size |
risch | \(-\frac {x}{\left (x -2\right ) \ln \left (2 \ln \relax (2)-\ln \left (\left (\left ({\mathrm e}^{x}-1\right ) x +2 \,{\mathrm e}^{x}-2\right ) \ln \relax (2)+2 x^{2}+2 x \right )\right )}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.33, size = 48, normalized size = 1.26 \begin {gather*} -\frac {x}{{\left (x - 2\right )} \log \left (2 \, \log \relax (2) - \log \left (2 \, x^{2} - x {\left (\log \relax (2) - 2\right )} + {\left (x \log \relax (2) + 2 \, \log \relax (2)\right )} e^{x} - 2 \, \log \relax (2)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {4\,x-\ln \relax (2)\,\left (2\,x-x^2\right )+6\,x^2-4\,x^3-{\mathrm {e}}^x\,\ln \relax (2)\,\left (x^3+x^2-6\,x\right )+\ln \left (\ln \left (\frac {4}{2\,x-\ln \relax (2)\,\left (x+2\right )+2\,x^2+{\mathrm {e}}^x\,\ln \relax (2)\,\left (x+2\right )}\right )\right )\,\ln \left (\frac {4}{2\,x-\ln \relax (2)\,\left (x+2\right )+2\,x^2+{\mathrm {e}}^x\,\ln \relax (2)\,\left (x+2\right )}\right )\,\left (4\,x-\ln \relax (2)\,\left (2\,x+4\right )+4\,x^2+{\mathrm {e}}^x\,\ln \relax (2)\,\left (2\,x+4\right )\right )}{{\ln \left (\ln \left (\frac {4}{2\,x-\ln \relax (2)\,\left (x+2\right )+2\,x^2+{\mathrm {e}}^x\,\ln \relax (2)\,\left (x+2\right )}\right )\right )}^2\,\ln \left (\frac {4}{2\,x-\ln \relax (2)\,\left (x+2\right )+2\,x^2+{\mathrm {e}}^x\,\ln \relax (2)\,\left (x+2\right )}\right )\,\left (8\,x+\ln \relax (2)\,\left (-x^3+2\,x^2+4\,x-8\right )-6\,x^3+2\,x^4-{\mathrm {e}}^x\,\ln \relax (2)\,\left (-x^3+2\,x^2+4\,x-8\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.75, size = 37, normalized size = 0.97 \begin {gather*} - \frac {x}{\left (x - 2\right ) \log {\left (\log {\left (\frac {4}{2 x^{2} + 2 x + \left (- x - 2\right ) \log {\relax (2 )} + \left (x + 2\right ) e^{x} \log {\relax (2 )}} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________