Optimal. Leaf size=21 \[ 3 \left (-2+\frac {1}{4} e^{4+2 x}-2 x\right )^2 x \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 63, normalized size of antiderivative = 3.00, number of steps used = 12, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {12, 2176, 2194, 2196} \begin {gather*} 12 x^3-3 e^{2 x+4} x^2+24 x^2-3 e^{2 x+4} x+12 x-\frac {3}{64} e^{4 x+8}+\frac {3}{64} e^{4 x+8} (4 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \left (192+768 x+576 x^2+e^{8+4 x} (3+12 x)+e^{4+2 x} \left (-48-192 x-96 x^2\right )\right ) \, dx\\ &=12 x+24 x^2+12 x^3+\frac {1}{16} \int e^{8+4 x} (3+12 x) \, dx+\frac {1}{16} \int e^{4+2 x} \left (-48-192 x-96 x^2\right ) \, dx\\ &=12 x+24 x^2+12 x^3+\frac {3}{64} e^{8+4 x} (1+4 x)+\frac {1}{16} \int \left (-48 e^{4+2 x}-192 e^{4+2 x} x-96 e^{4+2 x} x^2\right ) \, dx-\frac {3}{16} \int e^{8+4 x} \, dx\\ &=-\frac {3}{64} e^{8+4 x}+12 x+24 x^2+12 x^3+\frac {3}{64} e^{8+4 x} (1+4 x)-3 \int e^{4+2 x} \, dx-6 \int e^{4+2 x} x^2 \, dx-12 \int e^{4+2 x} x \, dx\\ &=-\frac {3}{2} e^{4+2 x}-\frac {3}{64} e^{8+4 x}+12 x-6 e^{4+2 x} x+24 x^2-3 e^{4+2 x} x^2+12 x^3+\frac {3}{64} e^{8+4 x} (1+4 x)+6 \int e^{4+2 x} \, dx+6 \int e^{4+2 x} x \, dx\\ &=\frac {3}{2} e^{4+2 x}-\frac {3}{64} e^{8+4 x}+12 x-3 e^{4+2 x} x+24 x^2-3 e^{4+2 x} x^2+12 x^3+\frac {3}{64} e^{8+4 x} (1+4 x)-3 \int e^{4+2 x} \, dx\\ &=-\frac {3}{64} e^{8+4 x}+12 x-3 e^{4+2 x} x+24 x^2-3 e^{4+2 x} x^2+12 x^3+\frac {3}{64} e^{8+4 x} (1+4 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 20, normalized size = 0.95 \begin {gather*} \frac {3}{16} x \left (e^{4+2 x}-8 (1+x)\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 36, normalized size = 1.71 \begin {gather*} 12 \, x^{3} + 24 \, x^{2} + \frac {3}{16} \, x e^{\left (4 \, x + 8\right )} - 3 \, {\left (x^{2} + x\right )} e^{\left (2 \, x + 4\right )} + 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.02, size = 36, normalized size = 1.71 \begin {gather*} 12 \, x^{3} + 24 \, x^{2} + \frac {3}{16} \, x e^{\left (4 \, x + 8\right )} - 3 \, {\left (x^{2} + x\right )} e^{\left (2 \, x + 4\right )} + 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.11, size = 41, normalized size = 1.95
method | result | size |
risch | \(\frac {3 \,{\mathrm e}^{4 x +8} x}{16}+\frac {\left (-48 x^{2}-48 x \right ) {\mathrm e}^{2 x +4}}{16}+12 x^{3}+24 x^{2}+12 x\) | \(41\) |
norman | \(12 x +24 x^{2}+12 x^{3}-3 x \,{\mathrm e}^{2 x +4}-3 \,{\mathrm e}^{2 x +4} x^{2}+\frac {3 \,{\mathrm e}^{4 x +8} x}{16}\) | \(44\) |
default | \(12 x^{3}+24 x^{2}+12 x -\frac {3 \,{\mathrm e}^{4 x +8}}{8}+\frac {3 \,{\mathrm e}^{4 x +8} \left (2+x \right )}{16}-6 \,{\mathrm e}^{2 x +4}+9 \,{\mathrm e}^{2 x +4} \left (2+x \right )-3 \,{\mathrm e}^{2 x +4} \left (2+x \right )^{2}\) | \(66\) |
derivativedivides | \(24 \left (2+x \right )^{2}-168-84 x +12 x^{3}-\frac {3 \,{\mathrm e}^{4 x +8}}{8}+\frac {3 \,{\mathrm e}^{4 x +8} \left (2+x \right )}{16}-6 \,{\mathrm e}^{2 x +4}+9 \,{\mathrm e}^{2 x +4} \left (2+x \right )-3 \,{\mathrm e}^{2 x +4} \left (2+x \right )^{2}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 40, normalized size = 1.90 \begin {gather*} 12 \, x^{3} + 24 \, x^{2} - 3 \, {\left (x^{2} e^{4} + x e^{4}\right )} e^{\left (2 \, x\right )} + \frac {3}{16} \, x e^{\left (4 \, x + 8\right )} + 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 18, normalized size = 0.86 \begin {gather*} \frac {3\,x\,{\left (8\,x-{\mathrm {e}}^{2\,x+4}+8\right )}^2}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.13, size = 42, normalized size = 2.00 \begin {gather*} 12 x^{3} + 24 x^{2} + \frac {3 x e^{4 x + 8}}{16} + 12 x + \frac {\left (- 48 x^{2} - 48 x\right ) e^{2 x + 4}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________