Optimal. Leaf size=31 \[ \frac {\frac {4}{x}-x^2-\log \left (\frac {\log (18)}{x}\right )}{x \left (5+x^2\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.53, antiderivative size = 85, normalized size of antiderivative = 2.74, number of steps used = 32, number of rules used = 17, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.327, Rules used = {1594, 28, 6742, 199, 203, 266, 44, 290, 325, 288, 2357, 2304, 2323, 2324, 12, 4848, 2391} \begin {gather*} -\frac {9 x}{10 \left (x^2+5\right )}-\frac {4}{5 \left (x^2+5\right )}+\frac {1}{2 \left (x^2+5\right ) x}+\frac {4}{5 x^2}+\frac {x \log \left (\frac {\log (18)}{x}\right )}{5 \left (x^2+5\right )}-\frac {1}{10 x}-\frac {\log \left (\frac {\log (18)}{x}\right )}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 28
Rule 44
Rule 199
Rule 203
Rule 266
Rule 288
Rule 290
Rule 325
Rule 1594
Rule 2304
Rule 2323
Rule 2324
Rule 2357
Rule 2391
Rule 4848
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-40+5 x-16 x^2-4 x^3+x^5+\left (5 x+3 x^3\right ) \log \left (\frac {\log (18)}{x}\right )}{x^3 \left (25+10 x^2+x^4\right )} \, dx\\ &=\int \frac {-40+5 x-16 x^2-4 x^3+x^5+\left (5 x+3 x^3\right ) \log \left (\frac {\log (18)}{x}\right )}{x^3 \left (5+x^2\right )^2} \, dx\\ &=\int \left (-\frac {4}{\left (5+x^2\right )^2}-\frac {40}{x^3 \left (5+x^2\right )^2}+\frac {5}{x^2 \left (5+x^2\right )^2}-\frac {16}{x \left (5+x^2\right )^2}+\frac {x^2}{\left (5+x^2\right )^2}+\frac {\left (5+3 x^2\right ) \log \left (\frac {\log (18)}{x}\right )}{x^2 \left (5+x^2\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {1}{\left (5+x^2\right )^2} \, dx\right )+5 \int \frac {1}{x^2 \left (5+x^2\right )^2} \, dx-16 \int \frac {1}{x \left (5+x^2\right )^2} \, dx-40 \int \frac {1}{x^3 \left (5+x^2\right )^2} \, dx+\int \frac {x^2}{\left (5+x^2\right )^2} \, dx+\int \frac {\left (5+3 x^2\right ) \log \left (\frac {\log (18)}{x}\right )}{x^2 \left (5+x^2\right )^2} \, dx\\ &=\frac {1}{2 x \left (5+x^2\right )}-\frac {9 x}{10 \left (5+x^2\right )}-\frac {2}{5} \int \frac {1}{5+x^2} \, dx+\frac {1}{2} \int \frac {1}{5+x^2} \, dx+\frac {3}{2} \int \frac {1}{x^2 \left (5+x^2\right )} \, dx-8 \operatorname {Subst}\left (\int \frac {1}{x (5+x)^2} \, dx,x,x^2\right )-20 \operatorname {Subst}\left (\int \frac {1}{x^2 (5+x)^2} \, dx,x,x^2\right )+\int \left (\frac {\log \left (\frac {\log (18)}{x}\right )}{5 x^2}+\frac {2 \log \left (\frac {\log (18)}{x}\right )}{\left (5+x^2\right )^2}-\frac {\log \left (\frac {\log (18)}{x}\right )}{5 \left (5+x^2\right )}\right ) \, dx\\ &=-\frac {3}{10 x}+\frac {1}{2 x \left (5+x^2\right )}-\frac {9 x}{10 \left (5+x^2\right )}+\frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{10 \sqrt {5}}+\frac {1}{5} \int \frac {\log \left (\frac {\log (18)}{x}\right )}{x^2} \, dx-\frac {1}{5} \int \frac {\log \left (\frac {\log (18)}{x}\right )}{5+x^2} \, dx-\frac {3}{10} \int \frac {1}{5+x^2} \, dx+2 \int \frac {\log \left (\frac {\log (18)}{x}\right )}{\left (5+x^2\right )^2} \, dx-8 \operatorname {Subst}\left (\int \left (\frac {1}{25 x}-\frac {1}{5 (5+x)^2}-\frac {1}{25 (5+x)}\right ) \, dx,x,x^2\right )-20 \operatorname {Subst}\left (\int \left (\frac {1}{25 x^2}-\frac {2}{125 x}+\frac {1}{25 (5+x)^2}+\frac {2}{125 (5+x)}\right ) \, dx,x,x^2\right )\\ &=\frac {4}{5 x^2}-\frac {1}{10 x}-\frac {4}{5 \left (5+x^2\right )}+\frac {1}{2 x \left (5+x^2\right )}-\frac {9 x}{10 \left (5+x^2\right )}-\frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{5 \sqrt {5}}-\frac {\log \left (\frac {\log (18)}{x}\right )}{5 x}+\frac {x \log \left (\frac {\log (18)}{x}\right )}{5 \left (5+x^2\right )}-\frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right ) \log \left (\frac {\log (18)}{x}\right )}{5 \sqrt {5}}+\frac {1}{5} \int \frac {1}{5+x^2} \, dx-\frac {1}{5} \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{\sqrt {5} x} \, dx+\frac {1}{5} \int \frac {\log \left (\frac {\log (18)}{x}\right )}{5+x^2} \, dx\\ &=\frac {4}{5 x^2}-\frac {1}{10 x}-\frac {4}{5 \left (5+x^2\right )}+\frac {1}{2 x \left (5+x^2\right )}-\frac {9 x}{10 \left (5+x^2\right )}-\frac {\log \left (\frac {\log (18)}{x}\right )}{5 x}+\frac {x \log \left (\frac {\log (18)}{x}\right )}{5 \left (5+x^2\right )}+\frac {1}{5} \int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{\sqrt {5} x} \, dx-\frac {\int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x} \, dx}{5 \sqrt {5}}\\ &=\frac {4}{5 x^2}-\frac {1}{10 x}-\frac {4}{5 \left (5+x^2\right )}+\frac {1}{2 x \left (5+x^2\right )}-\frac {9 x}{10 \left (5+x^2\right )}-\frac {\log \left (\frac {\log (18)}{x}\right )}{5 x}+\frac {x \log \left (\frac {\log (18)}{x}\right )}{5 \left (5+x^2\right )}-\frac {i \int \frac {\log \left (1-\frac {i x}{\sqrt {5}}\right )}{x} \, dx}{10 \sqrt {5}}+\frac {i \int \frac {\log \left (1+\frac {i x}{\sqrt {5}}\right )}{x} \, dx}{10 \sqrt {5}}+\frac {\int \frac {\tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{x} \, dx}{5 \sqrt {5}}\\ &=\frac {4}{5 x^2}-\frac {1}{10 x}-\frac {4}{5 \left (5+x^2\right )}+\frac {1}{2 x \left (5+x^2\right )}-\frac {9 x}{10 \left (5+x^2\right )}-\frac {\log \left (\frac {\log (18)}{x}\right )}{5 x}+\frac {x \log \left (\frac {\log (18)}{x}\right )}{5 \left (5+x^2\right )}-\frac {i \text {Li}_2\left (-\frac {i x}{\sqrt {5}}\right )}{10 \sqrt {5}}+\frac {i \text {Li}_2\left (\frac {i x}{\sqrt {5}}\right )}{10 \sqrt {5}}+\frac {i \int \frac {\log \left (1-\frac {i x}{\sqrt {5}}\right )}{x} \, dx}{10 \sqrt {5}}-\frac {i \int \frac {\log \left (1+\frac {i x}{\sqrt {5}}\right )}{x} \, dx}{10 \sqrt {5}}\\ &=\frac {4}{5 x^2}-\frac {1}{10 x}-\frac {4}{5 \left (5+x^2\right )}+\frac {1}{2 x \left (5+x^2\right )}-\frac {9 x}{10 \left (5+x^2\right )}-\frac {\log \left (\frac {\log (18)}{x}\right )}{5 x}+\frac {x \log \left (\frac {\log (18)}{x}\right )}{5 \left (5+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.39, size = 188, normalized size = 6.06 \begin {gather*} \frac {1}{50} \left (\frac {40}{x^2}-\frac {40}{5+x^2}-\frac {50 x}{5+x^2}-10 \sqrt {5} \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )-i \sqrt {5} \log \left (\sqrt {5}+i x\right )+i \sqrt {5} \log \left (i \sqrt {5}+x\right )+4 i \sqrt {5} \log \left (1-\frac {i x}{\sqrt {5}}\right )-4 i \sqrt {5} \log \left (1+\frac {i x}{\sqrt {5}}\right )+\frac {5 i \log \left (\frac {\log (18)}{x}\right )}{\sqrt {5}+i x}-\frac {10 \log \left (\frac {\log (18)}{x}\right )}{x}+\frac {5 \log \left (\frac {\log (18)}{x}\right )}{i \sqrt {5}+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 27, normalized size = 0.87 \begin {gather*} -\frac {x^{3} + x \log \left (\frac {\log \left (18\right )}{x}\right ) - 4}{x^{4} + 5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.12, size = 88, normalized size = 2.84 \begin {gather*} \frac {5 \, {\left (\frac {\log \left (18\right )^{3}}{{\left (\log \left (18\right )^{2} + \frac {5 \, \log \left (18\right )^{2}}{x^{2}}\right )} x} - \frac {\log \left (18\right )}{x}\right )} \log \left (\frac {\log \left (18\right )}{x}\right ) + \frac {4 \, \log \left (18\right )^{3} - \frac {25 \, \log \left (18\right )^{3}}{x}}{\log \left (18\right )^{2} + \frac {5 \, \log \left (18\right )^{2}}{x^{2}}} + \frac {20 \, \log \left (18\right )}{x^{2}}}{25 \, \log \left (18\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 29, normalized size = 0.94
method | result | size |
norman | \(\frac {4-x^{3}-\ln \left (\frac {\ln \left (18\right )}{x}\right ) x}{x^{2} \left (x^{2}+5\right )}\) | \(29\) |
risch | \(-\frac {\ln \left (\frac {\ln \relax (2)+2 \ln \relax (3)}{x}\right )}{x \left (x^{2}+5\right )}-\frac {x^{3}-4}{x^{2} \left (x^{2}+5\right )}\) | \(43\) |
derivativedivides | \(-\ln \left (18\right ) \left (-\frac {4}{5 \ln \left (18\right ) x^{2}}+\frac {\ln \left (18\right )}{\left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right ) x}-\frac {4 \ln \left (18\right )}{25 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right )}+\frac {\ln \left (\frac {\ln \left (18\right )}{x}\right )}{5 \ln \left (18\right ) x}+\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}+\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{50 \ln \left (18\right )^{2}+\frac {250 \ln \left (18\right )^{2}}{x^{2}}}+\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}+\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{10 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right ) x^{2}}-\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (-\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}-\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{50 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right )}-\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (-\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}-\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{10 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right ) x^{2}}-\frac {\ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (18\right )}{5 x \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right )}-\frac {i \sqrt {5}\, \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}+\ln \left (18\right )}{\ln \left (18\right )}\right )}{50 \ln \left (18\right )}+\frac {i \sqrt {5}\, \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (-\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}-\ln \left (18\right )}{\ln \left (18\right )}\right )}{50 \ln \left (18\right )}\right )\) | \(396\) |
default | \(-\ln \left (18\right ) \left (-\frac {4}{5 \ln \left (18\right ) x^{2}}+\frac {\ln \left (18\right )}{\left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right ) x}-\frac {4 \ln \left (18\right )}{25 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right )}+\frac {\ln \left (\frac {\ln \left (18\right )}{x}\right )}{5 \ln \left (18\right ) x}+\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}+\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{50 \ln \left (18\right )^{2}+\frac {250 \ln \left (18\right )^{2}}{x^{2}}}+\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}+\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{10 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right ) x^{2}}-\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (-\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}-\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{50 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right )}-\frac {i \ln \left (18\right ) \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (-\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}-\ln \left (18\right )}{\ln \left (18\right )}\right ) \sqrt {5}}{10 \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right ) x^{2}}-\frac {\ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (18\right )}{5 x \left (\ln \left (18\right )^{2}+\frac {5 \ln \left (18\right )^{2}}{x^{2}}\right )}-\frac {i \sqrt {5}\, \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}+\ln \left (18\right )}{\ln \left (18\right )}\right )}{50 \ln \left (18\right )}+\frac {i \sqrt {5}\, \ln \left (\frac {\ln \left (18\right )}{x}\right ) \ln \left (-\frac {\frac {i \ln \left (18\right ) \sqrt {5}}{x}-\ln \left (18\right )}{\ln \left (18\right )}\right )}{50 \ln \left (18\right )}\right )\) | \(396\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 88, normalized size = 2.84 \begin {gather*} -\frac {35 \, x^{2} + 2 \, {\left (16 \, x^{3} + 80 \, x - 25\right )} \log \relax (x) + 80 \, x + 50 \, \log \left (2 \, \log \relax (3) + \log \relax (2)\right ) - 50}{50 \, {\left (x^{3} + 5 \, x\right )}} - \frac {3 \, x^{2} + 10}{10 \, {\left (x^{3} + 5 \, x\right )}} + \frac {4 \, {\left (2 \, x^{2} + 5\right )}}{5 \, {\left (x^{4} + 5 \, x^{2}\right )}} + \frac {16}{25} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.65, size = 27, normalized size = 0.87 \begin {gather*} -\frac {x^3+x\,\ln \left (\frac {\ln \left (18\right )}{x}\right )-4}{x^4+5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 26, normalized size = 0.84 \begin {gather*} \frac {4 - x^{3}}{x^{4} + 5 x^{2}} - \frac {\log {\left (\frac {\log {\left (18 \right )}}{x} \right )}}{x^{3} + 5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________