Optimal. Leaf size=19 \[ \left (1-e^{-\frac {1250}{x \log (2 x)}}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 1.63, antiderivative size = 29, normalized size of antiderivative = 1.53, number of steps used = 6, number of rules used = 4, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {6741, 12, 6742, 6706} \begin {gather*} e^{-\frac {2500}{x \log (2 x)}}-2 e^{-\frac {1250}{x \log (2 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2500 e^{-\frac {2500}{x \log (2 x)}} \left (1-e^{\frac {1250}{x \log (2 x)}}\right ) (1+\log (2 x))}{x^2 \log ^2(2 x)} \, dx\\ &=2500 \int \frac {e^{-\frac {2500}{x \log (2 x)}} \left (1-e^{\frac {1250}{x \log (2 x)}}\right ) (1+\log (2 x))}{x^2 \log ^2(2 x)} \, dx\\ &=2500 \int \left (\frac {e^{-\frac {2500}{x \log (2 x)}} (1+\log (2 x))}{x^2 \log ^2(2 x)}-\frac {e^{-\frac {1250}{x \log (2 x)}} (1+\log (2 x))}{x^2 \log ^2(2 x)}\right ) \, dx\\ &=2500 \int \frac {e^{-\frac {2500}{x \log (2 x)}} (1+\log (2 x))}{x^2 \log ^2(2 x)} \, dx-2500 \int \frac {e^{-\frac {1250}{x \log (2 x)}} (1+\log (2 x))}{x^2 \log ^2(2 x)} \, dx\\ &=e^{-\frac {2500}{x \log (2 x)}}-2 e^{-\frac {1250}{x \log (2 x)}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 37, normalized size = 1.95 \begin {gather*} -2500 \left (-\frac {e^{-\frac {2500}{x \log (2 x)}}}{2500}+\frac {e^{-\frac {1250}{x \log (2 x)}}}{1250}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 27, normalized size = 1.42 \begin {gather*} -2 \, e^{\left (-\frac {1250}{x \log \left (2 \, x\right )}\right )} + e^{\left (-\frac {2500}{x \log \left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 34, normalized size = 1.79 \begin {gather*} -{\left (2 \, e^{\left (\frac {1250}{x \log \relax (2) + x \log \relax (x)}\right )} - 1\right )} e^{\left (-\frac {2500}{x \log \relax (2) + x \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 28, normalized size = 1.47
method | result | size |
risch | \({\mathrm e}^{-\frac {2500}{x \ln \left (2 x \right )}}-2 \,{\mathrm e}^{-\frac {1250}{x \ln \left (2 x \right )}}\) | \(28\) |
default | \(\frac {-2 x \ln \relax (x ) {\mathrm e}^{-\frac {1250}{x \left (\ln \relax (2)+\ln \relax (x )\right )}}-2 \ln \relax (2) x \,{\mathrm e}^{-\frac {1250}{x \left (\ln \relax (2)+\ln \relax (x )\right )}}}{x \left (\ln \relax (2)+\ln \relax (x )\right )}+\frac {x \ln \relax (x ) {\mathrm e}^{-\frac {2500}{x \left (\ln \relax (2)+\ln \relax (x )\right )}}+\ln \relax (2) x \,{\mathrm e}^{-\frac {2500}{x \left (\ln \relax (2)+\ln \relax (x )\right )}}}{x \left (\ln \relax (2)+\ln \relax (x )\right )}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 31, normalized size = 1.63 \begin {gather*} {\mathrm {e}}^{-\frac {2500}{x\,\ln \relax (2)+x\,\ln \relax (x)}}-2\,{\mathrm {e}}^{-\frac {1250}{x\,\ln \relax (2)+x\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 22, normalized size = 1.16 \begin {gather*} - 2 e^{- \frac {1250}{x \log {\left (2 x \right )}}} + e^{- \frac {2500}{x \log {\left (2 x \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________