Optimal. Leaf size=29 \[ 5 e^{-x \log (4)-\frac {\log ^2(3) \log ^2(\log (x))}{2+x}}+\log (x) \]
________________________________________________________________________________________
Rubi [B] time = 7.94, antiderivative size = 59, normalized size of antiderivative = 2.03, number of steps used = 6, number of rules used = 5, integrand size = 136, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {1594, 27, 6688, 6742, 2288} \begin {gather*} \frac {5\ 4^{-x} e^{-\frac {\log ^2(3) \log ^2(\log (x))}{x+2}} \left (x^3 \log (x)+4 x^2 \log (x)+4 x \log (x)\right )}{x (x+2)^2 \log (x)}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {\left (2 x+x^2\right ) \log (4)+\log ^2(3) \log ^2(\log (x))}{2+x}\right ) \left (\exp \left (\frac {\left (2 x+x^2\right ) \log (4)+\log ^2(3) \log ^2(\log (x))}{2+x}\right ) \left (4+4 x+x^2\right ) \log (x)+\left (-20 x-20 x^2-5 x^3\right ) \log (4) \log (x)+(-20-10 x) \log ^2(3) \log (\log (x))+5 x \log ^2(3) \log (x) \log ^2(\log (x))\right )}{x \left (4+4 x+x^2\right ) \log (x)} \, dx\\ &=\int \frac {\exp \left (-\frac {\left (2 x+x^2\right ) \log (4)+\log ^2(3) \log ^2(\log (x))}{2+x}\right ) \left (\exp \left (\frac {\left (2 x+x^2\right ) \log (4)+\log ^2(3) \log ^2(\log (x))}{2+x}\right ) \left (4+4 x+x^2\right ) \log (x)+\left (-20 x-20 x^2-5 x^3\right ) \log (4) \log (x)+(-20-10 x) \log ^2(3) \log (\log (x))+5 x \log ^2(3) \log (x) \log ^2(\log (x))\right )}{x (2+x)^2 \log (x)} \, dx\\ &=\int \frac {4^{-x} e^{-\frac {\log ^2(3) \log ^2(\log (x))}{2+x}} \left (-10 (2+x) \log ^2(3) \log (\log (x))+\log (x) \left ((2+x)^2 \left (4^x e^{\frac {\log ^2(3) \log ^2(\log (x))}{2+x}}-5 x \log (4)\right )+5 x \log ^2(3) \log ^2(\log (x))\right )\right )}{x (2+x)^2 \log (x)} \, dx\\ &=\int \left (\frac {1}{x}-\frac {5\ 4^{-x} e^{-\frac {\log ^2(3) \log ^2(\log (x))}{2+x}} \left (4 x \log (4) \log (x)+4 x^2 \log (4) \log (x)+x^3 \log (4) \log (x)+4 \log ^2(3) \log (\log (x))+2 x \log ^2(3) \log (\log (x))-x \log ^2(3) \log (x) \log ^2(\log (x))\right )}{x (2+x)^2 \log (x)}\right ) \, dx\\ &=\log (x)-5 \int \frac {4^{-x} e^{-\frac {\log ^2(3) \log ^2(\log (x))}{2+x}} \left (4 x \log (4) \log (x)+4 x^2 \log (4) \log (x)+x^3 \log (4) \log (x)+4 \log ^2(3) \log (\log (x))+2 x \log ^2(3) \log (\log (x))-x \log ^2(3) \log (x) \log ^2(\log (x))\right )}{x (2+x)^2 \log (x)} \, dx\\ &=\log (x)+\frac {5\ 4^{-x} e^{-\frac {\log ^2(3) \log ^2(\log (x))}{2+x}} \left (4 x \log (x)+4 x^2 \log (x)+x^3 \log (x)\right )}{x (2+x)^2 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 28, normalized size = 0.97 \begin {gather*} 5\ 4^{-x} e^{-\frac {\log ^2(3) \log ^2(\log (x))}{2+x}}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 65, normalized size = 2.24 \begin {gather*} {\left (e^{\left (\frac {\log \relax (3)^{2} \log \left (\log \relax (x)\right )^{2} + 2 \, {\left (x^{2} + 2 \, x\right )} \log \relax (2)}{x + 2}\right )} \log \relax (x) + 5\right )} e^{\left (-\frac {\log \relax (3)^{2} \log \left (\log \relax (x)\right )^{2} + 2 \, {\left (x^{2} + 2 \, x\right )} \log \relax (2)}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.05, size = 45, normalized size = 1.55 \begin {gather*} 5 \, e^{\left (-\frac {\log \relax (3)^{2} \log \left (\log \relax (x)\right )^{2}}{x + 2} - \frac {2 \, x^{2} \log \relax (2)}{x + 2} - \frac {4 \, x \log \relax (2)}{x + 2}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 37, normalized size = 1.28
method | result | size |
risch | \(\ln \relax (x )+5 \,{\mathrm e}^{-\frac {\ln \relax (3)^{2} \ln \left (\ln \relax (x )\right )^{2}+2 x^{2} \ln \relax (2)+4 x \ln \relax (2)}{2+x}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 28, normalized size = 0.97 \begin {gather*} 5 \, e^{\left (-\frac {\log \relax (3)^{2} \log \left (\log \relax (x)\right )^{2}}{x + 2} - 2 \, x \log \relax (2)\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.94, size = 48, normalized size = 1.66 \begin {gather*} \ln \relax (x)+\frac {5\,{\mathrm {e}}^{-\frac {{\ln \left (\ln \relax (x)\right )}^2\,{\ln \relax (3)}^2}{x+2}}}{2^{\frac {4\,x}{x+2}}\,2^{\frac {2\,x^2}{x+2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.00, size = 32, normalized size = 1.10 \begin {gather*} \log {\relax (x )} + 5 e^{- \frac {\left (2 x^{2} + 4 x\right ) \log {\relax (2 )} + \log {\relax (3 )}^{2} \log {\left (\log {\relax (x )} \right )}^{2}}{x + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________