Optimal. Leaf size=23 \[ -x-e^{\frac {4 (3-\log (3))}{\log (2)}} x^4 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {12} \begin {gather*} x^4 \left (-e^{\frac {4 (3-\log (3))}{\log (2)}}\right )-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-\frac {4 (-3+\log (3))}{\log (2)}} \int \left (-e^{\frac {4 (-3+\log (3))}{\log (2)}}-4 x^3\right ) \, dx\\ &=-x-e^{\frac {4 (3-\log (3))}{\log (2)}} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.09 \begin {gather*} -x-3^{-\frac {4}{\log (2)}} e^{\frac {12}{\log (2)}} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 30, normalized size = 1.30 \begin {gather*} -{\left (x^{4} + x e^{\left (\frac {4 \, {\left (\log \relax (3) - 3\right )}}{\log \relax (2)}\right )}\right )} e^{\left (-\frac {4 \, {\left (\log \relax (3) - 3\right )}}{\log \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 30, normalized size = 1.30 \begin {gather*} -{\left (x^{4} + x e^{\left (\frac {4 \, {\left (\log \relax (3) - 3\right )}}{\log \relax (2)}\right )}\right )} e^{\left (-\frac {4 \, {\left (\log \relax (3) - 3\right )}}{\log \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 1.09
method | result | size |
risch | \(-3^{-\frac {4}{\ln \relax (2)}} x^{4} {\mathrm e}^{\frac {12}{\ln \relax (2)}}-x\) | \(25\) |
gosper | \(-x \left ({\mathrm e}^{\frac {4 \ln \relax (3)-12}{\ln \relax (2)}}+x^{3}\right ) {\mathrm e}^{-\frac {4 \left (\ln \relax (3)-3\right )}{\ln \relax (2)}}\) | \(32\) |
default | \({\mathrm e}^{-\frac {4 \left (\ln \relax (3)-3\right )}{\ln \relax (2)}} \left (-{\mathrm e}^{\frac {4 \ln \relax (3)-12}{\ln \relax (2)}} x -x^{4}\right )\) | \(35\) |
norman | \(\left (-3^{-\frac {1}{\ln \relax (2)}} {\mathrm e}^{\frac {3}{\ln \relax (2)}} x^{4}-3^{\frac {3}{\ln \relax (2)}} {\mathrm e}^{-\frac {9}{\ln \relax (2)}} x \right ) {\mathrm e}^{-\frac {3 \left (\ln \relax (3)-3\right )}{\ln \relax (2)}}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 30, normalized size = 1.30 \begin {gather*} -{\left (x^{4} + x e^{\left (\frac {4 \, {\left (\log \relax (3) - 3\right )}}{\log \relax (2)}\right )}\right )} e^{\left (-\frac {4 \, {\left (\log \relax (3) - 3\right )}}{\log \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 20, normalized size = 0.87 \begin {gather*} -{\mathrm {e}}^{-\frac {\ln \left (81\right )-12}{\ln \relax (2)}}\,x^4-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 19, normalized size = 0.83 \begin {gather*} - \frac {x^{4} e^{\frac {12}{\log {\relax (2 )}}}}{3^{\frac {4}{\log {\relax (2 )}}}} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________