Optimal. Leaf size=26 \[ 4+\frac {2 e^{(-x+\log (x))^2} x^2}{-\frac {4}{3}-x} \]
________________________________________________________________________________________
Rubi [F] time = 3.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \left (-48+30 x-12 x^2-36 x^3+\left (-48+12 x+36 x^2\right ) \log (x)\right )}{16+24 x+9 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \left (-48+30 x-12 x^2-36 x^3+\left (-48+12 x+36 x^2\right ) \log (x)\right )}{(4+3 x)^2} \, dx\\ &=\int \left (-\frac {48 e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{(4+3 x)^2}+\frac {30 e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x}{(4+3 x)^2}-\frac {12 e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x^2}{(4+3 x)^2}-\frac {36 e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x^3}{(4+3 x)^2}+\frac {12 e^{x^2+(1-2 x) \log (x)+\log ^2(x)} (-1+x) \log (x)}{4+3 x}\right ) \, dx\\ &=-\left (12 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x^2}{(4+3 x)^2} \, dx\right )+12 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)} (-1+x) \log (x)}{4+3 x} \, dx+30 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x}{(4+3 x)^2} \, dx-36 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x^3}{(4+3 x)^2} \, dx-48 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{(4+3 x)^2} \, dx\\ &=-\left (12 \int \left (\frac {1}{9} e^{x^2+(1-2 x) \log (x)+\log ^2(x)}+\frac {16 e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{9 (4+3 x)^2}-\frac {8 e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{9 (4+3 x)}\right ) \, dx\right )+12 \int \left (\frac {1}{3} e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \log (x)-\frac {7 e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \log (x)}{3 (4+3 x)}\right ) \, dx+30 \int \left (-\frac {4 e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{3 (4+3 x)^2}+\frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{3 (4+3 x)}\right ) \, dx-36 \int \left (-\frac {8}{27} e^{x^2+(1-2 x) \log (x)+\log ^2(x)}+\frac {1}{9} e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x-\frac {64 e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{27 (4+3 x)^2}+\frac {16 e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{9 (4+3 x)}\right ) \, dx-48 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{(4+3 x)^2} \, dx\\ &=-\left (\frac {4}{3} \int e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \, dx\right )-4 \int e^{x^2+(1-2 x) \log (x)+\log ^2(x)} x \, dx+4 \int e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \log (x) \, dx+10 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{4+3 x} \, dx+\frac {32}{3} \int e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \, dx+\frac {32}{3} \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{4+3 x} \, dx-\frac {64}{3} \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{(4+3 x)^2} \, dx-28 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)} \log (x)}{4+3 x} \, dx-40 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{(4+3 x)^2} \, dx-48 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{(4+3 x)^2} \, dx-64 \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{4+3 x} \, dx+\frac {256}{3} \int \frac {e^{x^2+(1-2 x) \log (x)+\log ^2(x)}}{(4+3 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.96, size = 26, normalized size = 1.00 \begin {gather*} -\frac {6 e^{x^2+\log ^2(x)} x^{2-2 x}}{4+3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 28, normalized size = 1.08 \begin {gather*} -\frac {6 \, x e^{\left (x^{2} - {\left (2 \, x - 1\right )} \log \relax (x) + \log \relax (x)^{2}\right )}}{3 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {6 \, {\left (6 \, x^{3} + 2 \, x^{2} - 2 \, {\left (3 \, x^{2} + x - 4\right )} \log \relax (x) - 5 \, x + 8\right )} e^{\left (x^{2} - {\left (2 \, x - 1\right )} \log \relax (x) + \log \relax (x)^{2}\right )}}{9 \, x^{2} + 24 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 27, normalized size = 1.04
method | result | size |
risch | \(-\frac {6 x \,x^{1-2 x} {\mathrm e}^{\ln \relax (x )^{2}+x^{2}}}{4+3 x}\) | \(27\) |
norman | \(-\frac {6 x \,{\mathrm e}^{\ln \relax (x )^{2}+\left (1-2 x \right ) \ln \relax (x )+x^{2}}}{4+3 x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 26, normalized size = 1.00 \begin {gather*} -\frac {6 \, x^{2} e^{\left (x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}\right )}}{3 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.87, size = 26, normalized size = 1.00 \begin {gather*} -\frac {2\,x^2\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{{\ln \relax (x)}^2}}{x^{2\,x}\,\left (x+\frac {4}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 27, normalized size = 1.04 \begin {gather*} - \frac {6 x e^{x^{2} + \left (1 - 2 x\right ) \log {\relax (x )} + \log {\relax (x )}^{2}}}{3 x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________