Optimal. Leaf size=23 \[ \frac {1-5 x^3}{x \left (1+\frac {2}{5 e}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 38, normalized size of antiderivative = 1.65, number of steps used = 5, number of rules used = 5, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.064, Rules used = {1680, 12, 1814, 21, 8} \begin {gather*} \frac {5 e^2-(2+5 e)^2 x}{e x (5 e x+5 e+2)}-5 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 21
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {5 \left (3 (2+5 e)^4-80 e \left (8+60 e+150 e^2+175 e^3\right ) x+600 e^2 (2+5 e)^2 x^2-10000 e^4 x^4\right )}{\left ((2+5 e)^2-100 e^2 x^2\right )^2} \, dx,x,\frac {20 e^9+50 e^{10}}{100 e^{10}}+x\right )\\ &=5 \operatorname {Subst}\left (\int \frac {3 (2+5 e)^4-80 e \left (8+60 e+150 e^2+175 e^3\right ) x+600 e^2 (2+5 e)^2 x^2-10000 e^4 x^4}{\left ((2+5 e)^2-100 e^2 x^2\right )^2} \, dx,x,\frac {20 e^9+50 e^{10}}{100 e^{10}}+x\right )\\ &=\frac {5 e^2-(2+5 e)^2 x}{e x (2+5 e+5 e x)}-\frac {5 \operatorname {Subst}\left (\int \frac {2 (2+5 e)^4-200 e^2 (2+5 e)^2 x^2}{(2+5 e)^2-100 e^2 x^2} \, dx,x,\frac {20 e^9+50 e^{10}}{100 e^{10}}+x\right )}{2 (2+5 e)^2}\\ &=\frac {5 e^2-(2+5 e)^2 x}{e x (2+5 e+5 e x)}-5 \operatorname {Subst}\left (\int 1 \, dx,x,\frac {20 e^9+50 e^{10}}{100 e^{10}}+x\right )\\ &=-5 x+\frac {5 e^2-(2+5 e)^2 x}{e x (2+5 e+5 e x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 49, normalized size = 2.13 \begin {gather*} -\frac {4 x+10 e x (2+x)+5 e^2 \left (-1+5 x+5 x^2+5 x^3\right )}{e x (2+5 e (1+x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.71, size = 53, normalized size = 2.30 \begin {gather*} -\frac {5 \, {\left (5 \, x^{3} + 5 \, x^{2} + 5 \, x - 1\right )} e^{2} + 10 \, {\left (x^{2} + 2 \, x\right )} e + 4 \, x}{5 \, {\left (x^{2} + x\right )} e^{2} + 2 \, x e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 31, normalized size = 1.35
method | result | size |
gosper | \(-\frac {5 \left (5 x^{3}-1\right ) {\mathrm e}^{5}}{x \left (5 x \,{\mathrm e}^{5}+5 \,{\mathrm e}^{5}+2 \,{\mathrm e}^{4}\right )}\) | \(31\) |
norman | \(\frac {-25 x^{3} {\mathrm e}^{5}+5 \,{\mathrm e}^{5}}{x \left (5 x \,{\mathrm e}^{5}+5 \,{\mathrm e}^{5}+2 \,{\mathrm e}^{4}\right )}\) | \(33\) |
risch | \(-5 x +\frac {-\left (4+25 \,{\mathrm e}^{2}+20 \,{\mathrm e}\right ) {\mathrm e}^{-1} x +5 \,{\mathrm e}}{\left (5 x \,{\mathrm e}+5 \,{\mathrm e}+2\right ) x}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 44, normalized size = 1.91 \begin {gather*} -5 \, x - \frac {x {\left (25 \, e^{2} + 20 \, e + 4\right )} - 5 \, e^{2}}{5 \, x^{2} e^{2} + x {\left (5 \, e^{2} + 2 \, e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.69, size = 39, normalized size = 1.70 \begin {gather*} \frac {5\,\mathrm {e}-x\,\left (4\,{\mathrm {e}}^{-1}+25\,\mathrm {e}+20\right )}{x\,\left (5\,\mathrm {e}+5\,x\,\mathrm {e}+2\right )}-5\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.89, size = 42, normalized size = 1.83 \begin {gather*} - 5 x - \frac {x \left (4 + 20 e + 25 e^{2}\right ) - 5 e^{2}}{5 x^{2} e^{2} + x \left (2 e + 5 e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________