Optimal. Leaf size=29 \[ e^{-\frac {3}{4 x}+\frac {e^3}{x}} \left (x-\frac {e^x}{\log (4)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.64, antiderivative size = 43, normalized size of antiderivative = 1.48, number of steps used = 5, number of rules used = 4, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 6742, 6706, 2288} \begin {gather*} e^{-\frac {3-4 e^3}{4 x}} x-\frac {e^{x-\frac {3-4 e^3}{4 x}}}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{-\frac {3-4 e^3}{4 x}} \left (e^x \left (-3+4 e^3-4 x^2\right )+\left (3 x-4 e^3 x+4 x^2\right ) \log (4)\right )}{x^2} \, dx}{4 \log (4)}\\ &=\frac {\int \left (-\frac {e^{-\frac {3-4 e^3}{4 x}+x} \left (3-4 e^3+4 x^2\right )}{x^2}+\frac {e^{-\frac {3-4 e^3}{4 x}} \left (3-4 e^3+4 x\right ) \log (4)}{x}\right ) \, dx}{4 \log (4)}\\ &=\frac {1}{4} \int \frac {e^{-\frac {3-4 e^3}{4 x}} \left (3-4 e^3+4 x\right )}{x} \, dx-\frac {\int \frac {e^{-\frac {3-4 e^3}{4 x}+x} \left (3-4 e^3+4 x^2\right )}{x^2} \, dx}{4 \log (4)}\\ &=e^{-\frac {3-4 e^3}{4 x}} x-\frac {e^{-\frac {3-4 e^3}{4 x}+x}}{\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 35, normalized size = 1.21 \begin {gather*} \frac {e^{\frac {-3+4 e^3}{4 x}} \left (-4 e^x+4 x \log (4)\right )}{4 \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 28, normalized size = 0.97 \begin {gather*} \frac {{\left (2 \, x \log \relax (2) - e^{x}\right )} e^{\left (\frac {4 \, e^{3} - 3}{4 \, x}\right )}}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 43, normalized size = 1.48 \begin {gather*} \frac {2 \, x e^{\left (\frac {4 \, e^{3} - 3}{4 \, x}\right )} \log \relax (2) - e^{\left (\frac {4 \, x^{2} + 4 \, e^{3} - 3}{4 \, x}\right )}}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 29, normalized size = 1.00
method | result | size |
risch | \(\frac {\left (8 x \ln \relax (2)-4 \,{\mathrm e}^{x}\right ) {\mathrm e}^{\frac {4 \,{\mathrm e}^{3}-3}{4 x}}}{8 \ln \relax (2)}\) | \(29\) |
norman | \(\frac {\left (x^{2}-\frac {x \,{\mathrm e}^{x}}{2 \ln \relax (2)}\right ) {\mathrm e}^{-\frac {-4 \,{\mathrm e}^{3}+3}{4 x}}}{x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 29, normalized size = 1.00 \begin {gather*} \frac {{\left (2 \, x \log \relax (2) - e^{x}\right )} e^{\left (\frac {e^{3}}{x} - \frac {3}{4 \, x}\right )}}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.33, size = 29, normalized size = 1.00 \begin {gather*} -\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^3}{x}-\frac {3}{4\,x}}\,\left (4\,{\mathrm {e}}^x-x\,\ln \left (256\right )\right )}{8\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.93, size = 24, normalized size = 0.83 \begin {gather*} \frac {\left (2 x \log {\relax (2 )} - e^{x}\right ) e^{- \frac {\frac {3}{4} - e^{3}}{x}}}{2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________